Abstract:
Disclosed is a phosphoric acid diester salt which can suppress deterioration of charge-discharge characteristics of a power storage element, and can suppress the rise in internal resistance after storage at high temperature, a production method therefor, a non-aqueous electrolytic solution for a power storage element, and a power storage element. Disclosed is a phosphoric acid diester salt represented by the following chemical formula (1): wherein Mn+ represents a hydrogen ion, an alkali metal ion, an alkali earth metal ion, an aluminum ion, a transition metal ion, or an onium ion; R1 and R2 are different from each other and represent a hydrocarbon group having 1 to 10 carbon atoms, or a hydrocarbon group having 1 to 10 carbon atoms and having at least one of a halogen atom, a heteroatom, and an unsaturated bond; and n represents a valence.
Abstract:
Provided are a nonaqueous electrolyte solution for a secondary battery, which causes less degradation in charge-discharge characteristic and less increase in internal resistance after storage in temperature load environments, and a secondary battery provided with same. Disclosed is a nonaqueous electrolyte solution for a secondary battery, which is used for a secondary battery, including a component (A) which is at least one phosphorus compound represented by any one of the general formulas (1) to (4), and a component (B) which is at least one phosphoric acid diester salt represented by the general formula (5).
Abstract:
A nonaqueous electrolytic solution for a secondary battery exhibits excellent cycle characteristics even in high-temperature environments. The solution includes at least one of boric acid esters, acid anhydrides, cyclic carbonates having an unsaturated bond, cyclic carbonates having a halogen atom, cyclic sulfonic acid esters, and amines having an acetoacetyl group. A secondary battery having a positive electrode and a negative electrode makes use of this electrolytic solution.
Abstract:
A nonaqueous electrolytic solution exhibits excellent storage characteristics even in high-temperature environments. The solution for the secondary battery includes at least one of boron complex salts, boric acid esters, acid anhydrides, cyclic carbonates having an unsaturated bond, cyclic carbonates having a halogen atom, cyclic sulfonic acid esters, and amines having an acetoacetyl group. A secondary battery having a positive electrode and a negative electrode makes use of this electrolytic solution.
Abstract:
A phosphodiester salt is added to the electrolytic solution to form a nonaqueous electrolytic solution for a secondary battery. The nonaqueous electrolytic solution has excellent storage characteristics in a temperature load environment. Deterioration of the charge-discharge characteristics of the nonaqueous electrolytic solution and increase in internal resistance of the nonaqueous electrolytic solution are suppressed during storage. A secondary battery having a positive electrode and a negative electrode makes use of this electrolytic solution.
Abstract:
A nonaqueous electrolytic solution for a secondary battery exhibits excellent cycle characteristics even in a high temperature environment. The solution can be included in a secondary battery. The solution includes at least one component (A) represented by the following chemical formula: in which Mn+ represents at least one of a hydrogen ion, an alkali metal ion, an alkaline earth metal ion, an aluminum ion, a transition metal ion and an onium ion, X represents a halogen atom, R1 represents a hydrocarbon group having 1 to 20 carbon atoms, or a hydrocarbon group having 1 to 20 carbon atoms and having at least any one of a halogen atom, a heteroatom or an unsaturated bond, and n represents a valence.
Abstract:
A nonaqueous electrolytic solution for a secondary battery exhibits excellent cycle characteristics even in high-temperature environments. The solution INCLUDES at least one of boron complex salts, boric acid esters, acid anhydrides, cyclic carbonates having an unsaturated bond, cyclic carbonates having a halogen atom, cyclic sulfonic acid esters, and amines having an acetoacetyl group. A secondary battery having a positive electrode and a negative electrode makes use of this electrolytic solution.