Abstract:
An integrated circuit die includes a silicon substrate. PMOS and NMOS transistors are formed on the silicon substrate. The carrier mobilities of the PMOS and NMOS transistors are increased by introducing tensile stress into the channel regions of the NMOS transistors and compressive stress into the channel regions of the PMOS transistors. Tensile stress is introduced by including a region of SiGe below the channel region of the NMOS transistors. Compressive stress is introduced by including regions of SiGe in the source and drain regions of the PMOS transistors.
Abstract:
Use of a replacement metal gate (RMG) process provides an opportunity to create precision polysilicon resistors alongside metal gate transistors. During formation of a sacrificial polysilicon gate, the precision polysilicon resistor can also be formed from the same polysilicon film. The polysilicon resistor can be slightly recessed so that a protective insulating layer can cover the resistor during subsequent replacement of the sacrificial gate with a metal gate. The final structure of the precision polysilicon resistor fabricated using such a process is more compact and less complex than existing structures that provide metal resistors for integrated circuits having metal gate transistors. Furthermore, the precision polysilicon resistor can be freely tuned to have a desired sheet resistance by either implanting the polysilicon film with dopants, adjusting the polysilicon film thickness, or both.
Abstract:
A method for fabricating enhanced-mobility pFET devices having channel lengths below 50 nm. Gates for pFETs may be patterned in dense arrays on a semiconductor substrate that includes shallow trench isolation (STI) structures. Partially-enclosed voids in the semiconductor substrate may be formed at source and drain regions for the gates, and subsequently filled with epitaxially-grown semiconductor that compressively stresses channel regions below the gates. Some of the gates (dummy gates) may extend over edges of the STI structures to prevent undesirable faceting of the epitaxial material in the source and drain regions.
Abstract:
An integrated circuit die includes a silicon substrate. PMOS and NMOS transistors are formed on the silicon substrate. The carrier mobilities of the PMOS and NMOS transistors are increased by introducing tensile stress to the channel region of the NMOS transistors and compressive stress to the channel regions of the PMOS transistors. Tensile stress is introduced by including a region of SiGe below the channel region of the NMOS transistors. Compressive stress is introduced by including regions of SiGe in the source and drain regions of the PMOS transistors.
Abstract:
An integrated circuit die includes a silicon substrate. PMOS and NMOS transistors are formed on the silicon substrate. The carrier mobilities of the PMOS and NMOS transistors are increased by introducing tensile stress to the channel region of the NMOS transistors and compressive stress to the channel regions of the PMOS transistors. Tensile stress is introduced by including a region of SiGe below the channel region of the NMOS transistors. Compressive stress is introduced by including regions of SiGe in the source and drain regions of the PMOS transistors.
Abstract:
Use of a replacement metal gate (RMG) process provides an opportunity to create precision polysilicon resistors alongside metal gate transistors. During formation of a sacrificial polysilicon gate, the precision polysilicon resistor can also be formed from the same polysilicon film. The polysilicon resistor can be slightly recessed so that a protective insulating layer can cover the resistor during subsequent replacement of the sacrificial gate with a metal gate. The final structure of the precision polysilicon resistor fabricated using such a process is more compact and less complex than existing structures that provide metal resistors for integrated circuits having metal gate transistors. Furthermore, the precision polysilicon resistor can be freely tuned to have a desired sheet resistance by either implanting the polysilicon film with dopants, adjusting the polysilicon film thickness, or both.
Abstract:
An integrated circuit die includes a silicon substrate. PMOS and NMOS transistors are formed on the silicon substrate. The carrier mobilities of the PMOS and NMOS transistors are increased by introducing tensile stress into the channel regions of the NMOS transistors and compressive stress into the channel regions of the PMOS transistors. Tensile stress is introduced by including a region of SiGe below the channel region of the NMOS transistors. Compressive stress is introduced by including regions of SiGe in the source and drain regions of the PMOS transistors.
Abstract:
An integrated circuit die includes a silicon substrate. PMOS and NMOS transistors are formed on the silicon substrate. The carrier mobilities of the PMOS and NMOS transistors are increased by introducing tensile stress into the channel regions of the NMOS transistors and compressive stress into the channel regions of the PMOS transistors. Tensile stress is introduced by including a region of SiGe below the channel region of the NMOS transistors. Compressive stress is introduced by including regions of SiGe in the source and drain regions of the PMOS transistors.
Abstract:
An integrated circuit die includes a silicon substrate. PMOS and NMOS transistors are formed on the silicon substrate. The carrier mobilities of the PMOS and NMOS transistors are increased by introducing tensile stress into the channel regions of the NMOS transistors and compressive stress into the channel regions of the PMOS transistors. Tensile stress is introduced by including a region of SiGe below the channel region of the NMOS transistors. Compressive stress is introduced by including regions of SiGe in the source and drain regions of the PMOS transistors.
Abstract:
A method for fabricating enhanced-mobility pFET devices having channel lengths below 50 nm. Gates for pFETs may be patterned in dense arrays on a semiconductor substrate that includes shallow trench isolation (STI) structures. Partially-enclosed voids in the semiconductor substrate may be formed at source and drain regions for the gates, and subsequently filled with epitaxially-grown semiconductor that compressively stresses channel regions below the gates. Some of the gates (dummy gates) may extend over edges of the STI structures to prevent undesirable faceting of the epitaxial material in the source and drain regions.