Abstract:
A liquid crystal display apparatus includes a first substrate, a second substrate spaced from the first substrate, and a liquid crystal layer disposed between the first substrate and the second substrate. The first substrate includes a first base substrate, a wire grid polarizer disposed on the first base substrate, and a first alignment layer disposed on the first base substrate and including photo-alignment material, wherein the first alignment layer includes a first area in which photo-alignment is performed and a second area in which photo-alignment is not performed. A method of manufacturing the apparatus is also disclosed.
Abstract:
A polarizer includes a base substrate, a metal wire layer disposed on the base substrate, and a plurality of wire grid patterns disposed on the base substrate or the metal wire layer.
Abstract:
A method of manufacturing an imprint master template including forming a cutting line guide at an edge of a first fine pattern unit having an upper surface on which a fine pattern is formed; cutting the wafer substrate by a cleaving process along the cutting line guide so that a cutting surface is formed, the cutting surface having a preliminary second surface where the cutting line guide was formed and a first surface which is formed by the cleaving process; polishing the preliminary second surface to form a second surface which is inclined at a predetermined angle with respect to the first surface; and bonding the first fine pattern unit and the second fine pattern unit to each other with the first surface of the first fine pattern unit facing the first surface of the second fine pattern unit.
Abstract:
A method of manufacturing a roll type imprint master mold including disposing a base layer on a substrate including a first area and a second area adjacent to the first area, disposing an inorganic insulation layer on the base layer, forming a first mask pattern and a first resin pattern in the first area, forming a pattern layer by etching the inorganic insulation layer using the first resin and the first mask patterns as a mask, removing the first resin and the first mask patterns, forming a second mask pattern and a second resin pattern in the second area, forming a pattern layer by etching the inorganic insulation layer using the second resin and the second mask patterns as a mask, removing the second resin and the second mask patterns, separating the base layer from the substrate, and attaching the base layer onto a roll body.
Abstract:
A display device includes: a substrate; a display area in which a plurality of pixels are arranged over the substrate; and a transmission area arranged inside the display area, where the transmission area is provided to overlap a component below the substrate, and a transparent organic layer including siloxane is arranged in the transmission area.
Abstract:
A method of manufacturing a light-emitting display apparatus and a light-emitting display apparatus are provided. The method includes forming a first photosensitive layer on a conductive material layer, forming a pixel electrode by etching the conductive material layer by using the first photosensitive layer as a mask, ashing the first photosensitive layer disposed on the pixel electrode, forming a pixel defining layer that covers an edge portion of the pixel electrode and includes a first opening overlapping the ashed first photosensitive layer, removing the ashed first photosensitive layer disposed in the first opening, forming an intermediate layer including a functional layer and an emission layer on the pixel defining layer, and forming an opposite electrode on the intermediate layer.
Abstract:
Provided are a display apparatus and a method of manufacturing the same. The display apparatus includes a substrate, a first conductive layer disposed on the substrate, and a first insulating pattern disposed on the first conductive layer. The first insulating pattern includes a fluorine compound and a nitrogen compound. The nitrogen compound is represented by Formula 1: NR1R2R3OH wherein in Formula 1, R1 to R3 are each independently selected from hydrogen, a substituted or unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C6-C30 aryl group, and a substituted or unsubstituted C7-C30 aralkyl group.
Abstract:
Provided are a display apparatus and a method of manufacturing the same. The display apparatus includes a substrate, a first conductive layer disposed on the substrate, and a first insulating pattern disposed on the first conductive layer. The first insulating pattern includes a fluorine compound and a nitrogen compound. The nitrogen compound is represented by Formula 1: NR1R2R3OH wherein in Formula 1, R1 to R3 are each independently selected from hydrogen, a substituted or unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C6-C30 aryl group, and a substituted or unsubstituted C7-C30 aralkyl group.
Abstract:
A method of manufacturing a light-emitting display apparatus and a light-emitting display apparatus are provided. The method includes forming a first photosensitive layer on a conductive material layer, forming a pixel electrode by etching the conductive material layer by using the first photosensitive layer as a mask, ashing the first photosensitive layer disposed on the pixel electrode, forming a pixel defining layer that covers an edge portion of the pixel electrode and includes a first opening overlapping the ashed first photosensitive layer, removing the ashed first photosensitive layer disposed in the first opening, forming an intermediate layer including a functional layer and an emission layer on the pixel defining layer, and forming an opposite electrode on the intermediate layer.
Abstract:
A stamp for nano imprinting includes a base substrate, a first pattern part and a second pattern part disposed on the base substrate and having different widths, and a third pattern part and a fourth pattern part having different widths. Each of the first pattern part to the fourth pattern part includes a plurality of nano patterns, and the first pattern part and the second pattern part and the third pattern part and the fourth pattern are disposed to be arranged adjacent to each other in a sequential order in the first direction.