Abstract:
Provided is a thin film transistor including an active layer including a first silicon active layer, a second silicon active layer, and an oxide active layer in a space between the first silicon active layer and the second silicon active layer, a gate electrode on the active layer with a gate insulating layer disposed therebetween, and a source electrode and a drain electrode with an interlayer insulating layer disposed between the gate electrode and the source and drain electrodes, the source and drain electrodes being in contact with the first silicon active layer and the second silicon active layer, respectively.
Abstract:
A thin film transistor includes a substrate, a semiconductor layer on the substrate, a first insulating layer covering the substrate and the semiconductor layer, a first gate electrode on the first insulating layer and overlapping the semiconductor layer, a second insulating layer covering the first gate electrode and the first insulating layer, a second gate electrode on the second insulating layer and overlapping the semiconductor layer and the first gate electrode, a third insulating layer covering the second gate electrode, a first contact hole defined in the first insulating layer, the second insulating layer and the third insulating layer, and through which a portion of the semiconductor layer is exposed, and a source electrode and a drain electrode connected to the semiconductor layer through the first contact hole.
Abstract:
Provided is a thin film transistor including an active layer including a first silicon active layer, a second silicon active layer, and an oxide active layer in a space between the first silicon active layer and the second silicon active layer, a gate electrode on the active layer with a gate insulating layer disposed therebetween, and a source electrode and a drain electrode with an interlayer insulating layer disposed between the gate electrode and the source and drain electrodes, the source and drain electrodes being in contact with the first silicon active layer and the second silicon active layer, respectively.
Abstract:
An organic light emitting display device includes pixels, a scan driver, a memory configured to store pixel data containing information indicative of threshold voltages and mobilities of first transistors in the pixels, a timing controller configured to modify one or more bits of first data to generate second data, the first data modified in response to the pixel data, a data driver configured to generate data signals based on the second data, and a control driver configured to supply a first control signal to a first control line commonly coupled to the pixels and a second control signal to a second control line, wherein each of the pixels is configured to store a data signal of a current frame and to emit light corresponding to a data signal of a previous frame.
Abstract:
A thin film transistor includes a substrate, a semiconductor layer on the substrate, a first insulating layer covering the substrate and the semiconductor layer, a first gate electrode on the first insulating layer and overlapping the semiconductor layer, a second insulating layer covering the first gate electrode and the first insulating layer, a second gate electrode on the second insulating layer and overlapping the semiconductor layer and the first gate electrode, a third insulating layer covering the second gate electrode, a first contact hole defined in the first insulating layer, the second insulating layer and the third insulating layer, and through which a portion of the semiconductor layer is exposed, and a source electrode and a drain electrode connected to the semiconductor layer through the first contact hole.
Abstract:
Provided is a thin film transistor including an active layer including a first silicon active layer, a second silicon active layer, and an oxide active layer in a space between the first silicon active layer and the second silicon active layer, a gate electrode on the active layer with a gate insulating layer disposed therebetween, and a source electrode and a drain electrode with an interlayer insulating layer disposed between the gate electrode and the source and drain electrodes, the source and drain electrodes being in contact with the first silicon active layer and the second silicon active layer, respectively.
Abstract:
A thin film transistor includes a substrate, a gate electrode, a buffer layer, a gate insulating layer, an active layer, an etching stop layer, a source electrode and a drain electrode. The gate electrode is formed on the substrate. The buffer layer partially covers both side portions of the gate electrode. The gate insulating layer covers the gate electrode and the buffer layer. The active layer is formed on the gate insulating layer. The etching stop layer is formed on the active layer, and has a first opening and a second opening on the active layer. The source electrode is formed on the etching stop layer, and contacts with the active layer through the first opening. The drain electrode is formed on the etching stop layer, and is contacted with the active layer through the second opening.
Abstract:
A pixel includes an organic light emitting diode (OLED) having a cathode electrode coupled to a second power supply, a pixel circuit configured to control an amount of current supplied to the OLED to correspond to a previous data signal, and a driver configured to store a present data signal supplied from a data line and to supply the previous data signal to the pixel circuit. The OLED, pixel circuit, and driver may be controlled by signals in a frame that includes first through fourth periods, the second power supply may be set to a first voltage in the first and second periods and to a second voltage in the third and fourth periods, and the first voltage may be a voltage at which the OLED does not emit light and the second voltage may be a voltage at which the OLED emits light.
Abstract:
Provided is a thin film transistor including an active layer including a first silicon active layer, a second silicon active layer, and an oxide active layer in a space between the first silicon active layer and the second silicon active layer, a gate electrode on the active layer with a gate insulating layer disposed therebetween, and a source electrode and a drain electrode with an interlayer insulating layer disposed between the gate electrode and the source and drain electrodes, the source and drain electrodes being in contact with the first silicon active layer and the second silicon active layer, respectively.
Abstract:
A display device includes a display panel, a data driver, a scan driver, and a power supply. The display panel includes power voltage lines and pixels coupled to data lines and scan lines. The data driver supplies data voltages to the data lines. The scan driver provides scan signals to the scan lines. The power supply supplies a power voltage to the power voltage lines. The display panel includes a compensation resistance coupled between s pixels and one of the power voltage lines.