Abstract:
A method for controlling a mobile communication device using a user's distance specifying algorithm, the method comprises a first process of receiving an input image from a camera to generate first data; a second process of determining whether there is a candidate group that can be determined as a face using the first data and second data including a user's distance information; a third process of extracting, if there is a candidate group that can be determined as a face, from a plurality of third data including location information of the candidate group, fourth data having a minimum distance between a center of the first data and a center of the third data; and a fourth process of comparing the fourth data with a predetermined user's distance to determine whether it has a value within a tolerance range.
Abstract:
A light emitting element display device can be used for light therapy. The device includes: a display panel including a plurality of light emitting elements; a retarder plate configured to convert light emitted from the plurality of light emitting elements into circularly polarized light; and a selective polarizer configured to selectively convert light supplied from the retarder plate into linearly polarized light or allow penetration of the light.
Abstract:
A head mounted display device includes a lens assembly which changes a path of light; a main display module which outputs a main image and is positioned in front of the lens assembly; a main optical block which shields at least a portion of a light representing the main image such that the light representing the main image faces the lens assembly; a sub-display module disposed on a side of the main optical block and which outputs a sub-image; a sub-optical block positioned on the side of the main optical block and which shields at least a portion of a light representing the sub-image; and a light path converter positioned in the sub-optical block and which changes a path of the light representing the sub-image such that the light representing the sub-image faces the lens assembly.
Abstract:
Systems and methods for detecting eye information are described. According to one embodiment, a detecting device includes a determination unit, a generation unit, and a detection unit. The determination unit is configured to determine whether a user wears glasses from an input image by using a first neural network including a plurality of filters. The generation unit is configured to generate a face image in which the glasses are removed from the input image by using a learned generator when a glasses-wearing signal is received from the determination unit. The detection unit is configured to generate an eye image by receiving the input image from the determination unit or receiving the face image from the generation unit and detect a pupil from the eye image using a second neural network including a plurality of filters.
Abstract:
A pupil detection device includes: a filter weight learner configured to generate a target image on the basis of pupil coordinate data acquired from a learning image and learn weights of a plurality of filters in order to generate a filtered image, by filtering the learning image using the plurality of filters, that is within a predetermined reference range of the target image; a split image generator configured to generate a pupil region split image for an input image using the plurality of filters having the learned weights; and a pupil coordinate detector configured to remove noise of the pupil region split image, select at least one of a plurality of pixels from which noise is removed, and detect pupil coordinates.
Abstract:
A light emitting element display device can be used for light therapy. The device includes: a display panel including a plurality of light emitting elements; a retarder plate configured to convert light emitted from the plurality of light emitting elements into circularly polarized light; and a selective polarizer configured to selectively convert light supplied from the retarder plate into linearly polarized light or allow penetration of the light.