Abstract:
A foldable glass substrate includes a top surface, a bottom surface, and a side surface. The side surface includes a first side surface extending at a first angle from the top surface, a second side surface extending at a second angle from the bottom surface, and a third side surface extending from each of the first side surface and the second side surface. A length of the third side surface in a direction substantially perpendicular to at least one of the top surface and the bottom surface is equal to or greater than about 0.3 times and equal to or less than about 0.7 times of a minimum distance between the top surface and the bottom surface. The minimum distance is equal to or greater than about 15 micrometers (μm) and equal to or less than about 100 μm.
Abstract:
A window glass includes a first surface and a second surface opposite to the first surface. A second area extending in a second direction, a third area spaced apart from the second area in a first direction perpendicular to the second direction and extending in the second direction, a first area disposed between the second area and the third area, a first buffer area disposed between the first area and the second area, and a second buffer area disposed between the first area and the third area are defined on the second surface. The first area has a first thickness, and each of the second and third areas has a second thickness greater than the first thickness. A plurality of groove patterns is defined in the first buffer area and the second buffer area.
Abstract:
A foldable glass substrate includes a top surface, a bottom surface, and a side surface. The side surface includes a first side surface extending at a first angle from the top surface, a second side surface extending at a second angle from the bottom surface, and a third side surface extending from each of the first side surface and the second side surface. A length of the third side surface in a direction substantially perpendicular to at least one of the top surface and the bottom surface is equal to or greater than about 0.3 times and equal to or less than about 0.7 times of a minimum distance between the top surface and the bottom surface. The minimum distance is equal to or greater than about 15 micrometers (μm) and equal to or less than about 100 μm.
Abstract:
A foldable glass substrate includes a top surface, a bottom surface, and a side surface. The side surface includes a first side surface extending at a first angle from the top surface, a second side surface extending at a second angle from the bottom surface, and a third side surface extending from each of the first side surface and the second side surface. A length of the third side surface in a direction substantially perpendicular to at least one of the top surface and the bottom surface is equal to or greater than about 0.3 times and equal to or less than about 0.7 times of a minimum distance between the top surface and the bottom surface. The minimum distance is equal to or greater than about 15 micrometers (μm) and equal to or less than about 100 μm.
Abstract:
An organic light emitting device including: a first electrode, a hole injection layer on the first electrode, a hole transport layer on the hole injection layer, an organic light emitting layer on the hole transport layer, a first electron transport layer on the organic light emitting layer, a second electron transport layer on the organic light emitting layer, an electron injection layer on the second electron transport layer and a second electrode on the electron injection layer, where the first electron transport layer includes a first material for improving a thermal stability, a second material for improving a luminous efficiency and a third material for reducing a driving voltage, and the second electron transport layer is laminated with the first electron transport layer, and the second electrode faces the first electrode.
Abstract:
An organic light emitting device including: a first electrode, a hole injection layer on the first electrode, a hole transport layer on the hole injection layer, an organic light emitting layer on the hole transport layer, a first electron transport layer on the organic light emitting layer, a second electron transport layer on the organic light emitting layer, an electron injection layer on the second electron transport layer and a second electrode on the electron injection layer, where the first electron transport layer includes a first material for improving a thermal stability, a second material for improving a luminous efficiency and a third material for reducing a driving voltage, and the second electron transport layer is laminated with the first electron transport layer, and the second electrode faces the first electrode.