Abstract:
A gate protection circuit includes: a clock signal generator to generate a plurality of gate clock signals; a gate driver to output gate signals based on the plurality of gate clock signals, the gate driver including a plurality of gate driving circuits cascaded to each other; and a monitoring line configured to transmit a feedback signal based on the plurality of gate clock signals via the plurality of gate driving circuits to the clock signal generator. The clock signal generator is to block generation of the plurality of gate clock signals in response to the feedback signal.
Abstract:
A gamma reference voltage generator includes first and second resistors between a base voltage source and an input node, a third resistor coupled to a first node between the first resistor and the second resistor, a first transistor coupled to the input node and coupled to a first output node, a fourth resistor coupled between the first transistor and the input node, an operational amplifier coupled to the first node and coupled to a second terminal of the third resistor, a second transistor coupled to the first transistor, coupled to the second terminal of the third resistor and a second output node, and coupled to an output terminal of the operational amplifier, a fifth resistor and a first capacitor coupled in parallel between the second output node and the base voltage source, and a plurality of resistors coupled between the first output node and the second output node.
Abstract:
A display device includes: a display panel including a plurality of pixels; a first correction circuit configured to perform, using a gamma correction value, a gamma correction for first image data; a second correction circuit configured to receive the gamma-corrected first image, and to generate second image data by performing gray-scale compensation for the gamma-corrected first image data; and a data driver configured to provide a data signal corresponding to the second image data to the plurality of pixels, wherein the second correction circuit performs the gray-scale compensation based on the gamma correction value and a threshold value measured for each of the plurality of pixels.
Abstract:
Provided are a display device and a driving method thereof. The display device includes: a display panel for displaying an image, based on data signals supplied from data lines; a load controller for determining a scale factor for controlling a target luminance of the image displayed in the display panel, based on a load of first image data input from the outside; and a data driver for outputting data signals to the data lines, corresponding to the first image data corrected using the scale factor. The data driver includes a plurality of data driver chips coupled to at least one data line among the data lines. The load controller determines the scale factor, based on at least one of a total load of the first image data and local loads with respect to the respective data driver chips.
Abstract:
A display device includes: a display including a gate line, a data line, and a pixel electrically coupled to the gate line and the data line; a controller configured to calculate a load of input data; a data driver configured to: generate a data signal corresponding to a grayscale value in the input data; and provide the data signal to the data line; a gate driver configured to: generate a gate signal having a pulse, based on a gate-on voltage; and provide the gate signal to the gate line; and a power supply configured to: provide the gate-on voltage to the gate driver; and vary the gate-on voltage based on the load, wherein the gate-on voltage has a voltage level for turning on the first transistor, and wherein a luminance of the display is increased as the load is increased.
Abstract:
A backlight unit includes: a light source configured to emit light based on a driving current; a sensing resistor configured to generate a sensing voltage based on the driving current; a first comparator configured to compare the sensing voltage to a first reference voltage divided from a reference power to thereby produce a first comparison signal; a first switching element controlled by the first comparison signal applied from the first comparator to thereby switch the sensing voltage; a second comparator configured to compare the sensing voltage applied via the first switching element to a first ramp signal to thereby produce a second comparison signal; a current control switching element configured to control an amount of the driving current based on the reference power and a current control signal applied from a current controller; an abnormality detector configured to convert the second comparison signal applied from the second comparator into a DC voltage and to compare the DC voltage to a critical voltage to thereby generate a third comparison signal; and a cut-off controller configured to compare the third comparison signal applied from the abnormality detector to a cut-off voltage to control the reference power based on the comparison result.