Abstract:
A computing system includes: a communication unit configured to: determine a relaxed coding profile including a polar-processing range for processing content data over a bit channel; process the content data based on a total polarization level being within the polar-processing range, the polar-processing range for controlling a polar processing mechanism or a portion therein corresponding to the bit channel for the content data; and an inter-device interface, coupled to the communication unit, configured to communicate the content data.
Abstract:
A concatenated encoder is provided that includes an outer encoder, a symbol interleaver and a polar inner encoder. The outer encoder is configured to encode a data stream using an outer code to generate outer codewords. The symbol interleaver is configured to interleave symbols of the outer codewords and generate a binary stream. The polar inner encoder is configured to encode the binary stream using a polar inner code to generate an encoded stream. A concatenated decoder is provided that includes a polar inner decoder, a symbol de-interleaver and an outer decoder. The polar inner decoder is configured to decode an encoded stream using a polar inner code to generate a binary stream. The symbol de-interleaver is configured to de-interleave symbols in the binary stream to generate outer codewords. The outer decoder is configured to decode the outer codewords using an outer code to generate a decoded stream.
Abstract:
An apparatus and method of constructing a universal polar code is provided. The apparatus includes a first function block configured to polarize and degrade a class of channels Wj to determine a probability of error Pe,j of each bit-channel of Wj, wherein jε{1, 2, . . . , s}, in accordance with a bit-channel index i; a second function block configured to determine a probability of error Pe(i) for the universal polar code for each bit-channel index i; a third function block configured to sort the Pe(i); and a fourth function block configured to determine a largest number k of bit-channels such that a sum of corresponding k bit-channel error probabilities Pe(i) is less than or equal to a target frame error rate Pt for the universal polar code, wherein the indices corresponding to the k smallest Pe(i) are good bit-channels for the universal polar code.
Abstract:
A concatenated encoder is provided that includes an outer encoder, a symbol interleaver and a polar inner encoder. The outer encoder is configured to encode a data stream using an outer code to generate outer codewords. The symbol interleaver is configured to interleave symbols of the outer codewords and generate a binary stream. The polar inner encoder is configured to encode the binary stream using a polar inner code to generate an encoded stream. A concatenated decoder is provided that includes a polar inner decoder, a symbol de-interleaver and an outer decoder. The polar inner decoder is configured to decode an encoded stream using a polar inner code to generate a binary stream. The symbol de-interleaver is configured to de-interleave symbols in the binary stream to generate outer codewords. The outer decoder is configured to decode the outer codewords using an outer code to generate a decoded stream.
Abstract:
An apparatus and a method. The apparatus includes a plurality of polarization processors, including n inputs and n outputs, where n is an integer, wherein the plurality of polarization processors is configured to polarize channels with different bit-channel reliability; and at least one permutation processor, including n inputs and n outputs, wherein each of the at least one permutation processor is connected between two of the plurality of polarization processors, and connects the n outputs of a first of the two of the plurality of polarizations processors to the n inputs of a second of the two of the plurality of polarization processors between which each of the at least one permutation processor is connected in a permutation pattern, wherein at least one permutation processor is configured to not further polarize a bit channel.
Abstract:
An apparatus and a method. The apparatus includes a plurality of polarization processors, including n inputs and n outputs, where n is an integer, wherein the plurality of polarization processors is configured to polarize channels with different bit-channel reliability; and at least one permutation processor, including n inputs and n outputs, wherein each of the at least one permutation processor is connected between two of the plurality of polarization processors, and connects the n outputs of a first of the two of the plurality of polarizations processors to the n inputs of a second of the two of the plurality of polarization processors between which each of the at least one permutation processor is connected in a permutation pattern, wherein at least one permutation processor is configured to not further polarize a bit channel.
Abstract:
A computing system includes: an inter-device interface configured to communicate content; and a communication unit, coupled to the inter-device interface, configured to process the content based on a polar communication mechanism utilizing multiple processing dimensions for communicating the content, including: generating a node result with a first orthogonal mechanism, and processing the node result from the first orthogonal mechanism with a second orthogonal mechanism.
Abstract:
An apparatus and method of constructing a universal polar code is provided. The apparatus includes a first function block configured to polarize and degrade a class of channels Wj to determine a probability of error Pe,j of each bit-channel of Wj, wherein jε{1, 2, . . . , s}, in accordance with a bit-channel index i; a second function block configured to determine a probability of error Pe(i) for the universal polar code for each bit-channel index i; a third function block configured to sort the Pe(i); and a fourth function block configured to determine a largest number k of bit-channels such that a sum of corresponding k bit-channel error probabilities Pe(i) is less than or equal to a target frame error rate Pt for the universal polar code, wherein the indices corresponding to the k smallest Pe(i) are good bit-channels for the universal polar code.
Abstract:
A communication system includes: an antenna for receiving a receiver signal for communicating a transmitter signal corresponding to the receiver signal over transmission channels according to a polar coding scheme; a communication unit including: an arrangement module for generating a sequenced-signal based on the receiver signal according to a permutation mechanism; and a decoder module for determining a communication content based on the sequenced-signal for communicating the communication content intended by the transmitter signal with a device.The communication system includes: a communication unit including an encoder module for determining a coded-message for representing a communication content according to a polar coding scheme, permutation module for generating a message-channel map for mapping the coded-message to transmission channels; and an antenna for transmitting a transmitter signal based on the coded-message according to the message-channel map for communicating the transmitter signal through the transmission channels with a device.
Abstract:
A communication system includes: an antenna for receiving a receiver signal for communicating a transmitter signal corresponding to the receiver signal over transmission channels according to a polar coding scheme; a communication unit including: an arrangement module for generating a sequenced-signal based on the receiver signal according to a permutation mechanism; and a decoder module for determining a communication content based on the sequenced-signal for communicating the communication content intended by the transmitter signal with a device.The communication system includes: a communication unit including an encoder module for determining a coded-message for representing a communication content according to a polar coding scheme, permutation module for generating a message-channel map for mapping the coded-message to transmission channels; and an antenna for transmitting a transmitter signal based on the coded-message according to the message-channel map for communicating the transmitter signal through the transmission channels with a device.