Abstract:
A method for real-time multi-frame super resolution (SR) of video content is provided. The method includes receiving a bitstream including an encoded video, motion metadata for a plurality of blocks of a frame of video content, and parameters. The motion metadata is estimated from the original video before downsampling and encoding. The motion metadata is averaged over consecutive blocks. The method includes upscaling the motion metadata for the plurality of blocks. The method also includes upscaling the decoded video using the upscaled motion metadata. The method also includes deblurring and denoising the upscaled video.
Abstract:
A method for providing media content in a computer network includes storing the media content, where the media content includes a segment having a group of frames. The method also includes determining a transmission rate for traffic to a client device. The method further includes selecting a subset of frames to drop from the group of frames based on (i) the transmission rate and (ii) a frame difference distortion (FDIFF) metric of each frame in the subset of frames. The method also includes shaping the segment by dropping the selected subset of frames from the group of frames, where the shaped segment has a lower bitrate than the segment. In addition, the method includes transmitting the shaped segment to the client device.
Abstract:
A method for simplified MPEG Media Transport (MMT) content presentation is provided. Two or more assets of an MMT package Processing Unit (MPU) are identified. The method also includes defining at least one of the two or more assets as a default asset and a remaining one or more assets as enriched assets. The at least one default asset does not include a composition function. The method further includes configuring the at least one default asset for independent presentation from the one or more enriched assets. The method includes transmitting the MPU including the at least one default asset and the one or more enriched assets.
Abstract:
A user equipment (UE) includes a communication unit and a processor. The communication unit communicates with a server. The processor transmits a hypertext transfer protocol (HTTP) streaming session request including an indication that the UE supports Motion Picture Experts Group (MPEG) media transport (MMT) to the server and receives a description of MMT service components including an indication that the server supports MMT. The processor also migrates the UE to a MMT streaming session, selects at least one service component from the MMT service components, transmits a selection message to the server, and receives media corresponding to the selected at least one service component.
Abstract:
Systems and methods for allocating bandwidth between a coordinator device and a user equipment (UE). In the system, the UE includes a communication interface configured to communicate with the coordinator device. The UE also includes a processor configured to receive an initial resource price from the coordinator device, determine an initial resource request, and transmit the initial resource request to the coordinator device.
Abstract:
A method for delivering content in a communication network includes receiving, by a cache, a request message requesting content to be served. The method includes storing multiple cache manifests corresponding to indicating content and capabilities of a plurality of caches. Each cache manifest indicates content and capabilities of a respective one of the caches and lists descriptions of the content stored in the respective cache. The method includes determining, based on information in the plurality of cache manifests, to serve the requested content, by selecting a cache from which to serve the requested content. The method includes in response to the determination, instructing the selected cache to transmit the requested content to a client device that generated the request message; and alternatively determining to not serve the requested content, based on the information in the plurality of cache manifests, and forwarding the request message to a higher level device.
Abstract:
A user equipment (UE) for reproducing a presentation having a plurality of media includes a processor, a memory, and a display. The processor receives a first document configured to provide a presentation and a second document configured to indicate a timing sequence for media and spatial layout updates. The processor determines whether the second document includes at least one condition for at least one instruction element among the plurality of instructions and reproduces the plurality of instructions in accordance with the first document, the second document, and/or the at least one condition. The memory stores at least one media based on a store directive when the second document includes a store directive for at least one instruction among the plurality of instructions. The display displays the reproduced plurality of media.
Abstract:
A user equipment (UE) configured to receive a resource over a multimedia broadcast multicast service (MBMS) includes a processor and a transceiver. The processor is configured to determine whether a uniform resource identifier (URI) is an MBMS URI. The transceiver is configured to transmit a domain name server (DNS) query to a DNS based on the MBMS URI and receive at least one resource record from the DNS. The processor is further configured to determine at least one of a unicast location or a multicast location based on the at least one resource record received from the DNS.
Abstract:
A method for providing media content in a computer network includes storing the media content, where the media content includes a segment having a group of frames. The method also includes determining a transmission rate for traffic to a client device. The method further includes selecting a subset of frames to drop from the group of frames based on (i) the transmission rate and (ii) a frame difference distortion (FDIFF) metric of each frame in the subset of frames. The method also includes shaping the segment by dropping the selected subset of frames from the group of frames, where the shaped segment has a lower bitrate than the segment. In addition, the method includes transmitting the shaped segment to the client device.
Abstract:
An access point that provides video streaming performs a bottleneck QoE maximization solution utilizing the latest media transport technology developed by MPEG known as MPEG Media Transport (MMT). The access point includes a transceiver configured to transmit one or more video sequences. The access point also includes one or more processors configured to perform bottleneck coordination by utilizing MMT to transmit, via the transceiver, the one or more video sequences.