Abstract:
A method for reporting channel state information by a terminal in a multiple access based communication system is provided. The method includes determining a most favored direction with a highest signal quality with respect to a reference signal received from a base station and determining, as a reported object, some channel directions including the most favored direction among channel directions formed together with the base station, identifying a channel quality information group including channel quality information corresponding to the some channel directions among channel quality information groups classified according to a distance measured with respect to the most favored direction, and transmitting the identified channel quality information group to the base station.
Abstract:
Methods and apparatuses are provided for transmitting data. An index of a first resource block is obtained from a scheduling grant. A user equipment determines value related to hopping based on a sequence generated by cell specific information. The user equipment determines a value related to mirroring based on the sequence generated by the cell specific information. The user equipment determines a second resource block for uplink transmission by the index of the first resource block, the value related to hopping, and the value related to mirroring.
Abstract:
Disclosed are a communication technique for merging, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system, and a system therefor. The disclosed communication technique and system therefor can be applied to intelligent services (for example, smart home, smart building, smart city, smart car or connected car, health care, digital education, retail, security and safety related services, and the like) on the basis of 5G communication technology and IoT-related technology. The present disclosure relates to a method and a device for receiving, by a terminal, broadcast information in a communication system. According to an embodiment of the present disclosure, the method by which a terminal receives broadcast information in a communication system comprises the steps of: receiving a plurality of radio frames from a base station; extracting at least one broadcasting channel signal from the plurality of radio frames in every set period; combining, for a preset time slot, the at least one broadcasting channel signal extracted in every set period; and acquiring broadcast information by decoding the combined broadcasting channel signal.
Abstract:
Disclosed is a 5G or pre-5G communication system for supporting a data transmission rate higher than that of a 4G communication system, such as LTE, and subsequent systems. Provided is a random access preamble transmitting method of a terminal for performing an initial access in a communication system, the method comprising the steps of: acquiring system information from a base station; determining a repetition level of a random access preamble by using the acquired system information; and transmitting the random access preamble with a repetitive frequency corresponding to the repetition level in a transmission resource area corresponding to the determined repetition level.
Abstract:
Methods and apparatuses are provided for transmitting data by a user equipment (UE) in a communication system. Resource information is received from a node B. A hopping parameter is determined based on a sequence defined by a cell specific seed. A mirroring parameter is determined based on the sequence defined by the cell specific seed. A resource for data transmission is determined based on the resource information, the hopping parameter, and the mirroring parameter. The data is transmitted using the resource for data transmission. The hopping parameter and the mirroring parameter are determined at a slot.
Abstract:
Methods and apparatuses are provided for transmitting data by a user equipment (UE) in a communication system. Resource information is received from a node B. One of inter-subframe hopping, and intra and inter-subframe hopping, are identified. A hopping parameter is determined. A mirroring parameter is determined. A resource is determined for data transmission based on the resource information, the hopping parameter, and the mirroring parameter. The data is transmitted using the resource for data transmission. The hopping parameter and the mirroring parameter are determined at a slot, if the intra and inter-subframe hopping is identified.
Abstract:
Disclosed are: a communication technique for merging, with the Internet of Things (IoT) technology, a 5th-generation (5G) communication system for supporting a data transmission rate higher than that of a 4th-generation (4G) system; and a system therefor. The disclosure can be applied to intelligent services (for example, smart home, smart building, smart city, smart car or connected car, health care, digital education, retailing, security and safety related services) on the basis of 5G communication technology and IoT related technology. One embodiment of the present invention enables a terminal to receive at least one reference signal from a base station in a mobile communication system, and to generate channel state information on the basis of the at least one reference signal so as to transmit the channel state information to the base station, wherein the at least one reference signal is received in a downlink pilot time slot (DwPTS) by using a resource determined on the basis of a special subframe configuration.
Abstract:
A method, provided by the present disclosure, of transmitting a reference signal by means of a base station in a wireless communication system using a plurality of antenna ports comprises the steps of: mapping wireless resources, for transmitting a reference signal, to a plurality of antenna ports for transmitting the reference signal; and using the wireless resources and transmitting the reference signal to a terminal through the mapped antenna ports. The step of mapping to the antenna ports is characterized by being executed on the basis of a combination of a first mapping pattern between the wireless resources and the antenna ports and a second mapping pattern between the wireless resources and the antenna ports.
Abstract:
Disclosed are a communication technique for merging, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system, and a system therefor. The disclosed technique and system can be applied to intelligent services (for example, smart home, smart building, smart city, smart car or connected car, health care, digital education, retailing, security and safety related services, and the like) on the basis of 5G communication technology and IoT related technology. A method for controlling uplink transmission power of a terminal in a wireless communication system comprises the steps of: initializing a power control adjustment value when a repetition level for a coverage enhancement mode is changed; updating the power control adjustment value according to a transmission power control (TPC) command received from a base station; calculating uplink transmission power on the basis of the updated power control adjustment value and the repetition level; and transmitting uplink data or control information by the calculated uplink transmission power.
Abstract:
Methods and apparatuses are provided for transmitting data in a subframe including two slots in a communication system. Resource allocation information is received at a UE. The UE determines a resource for data transmission based on the resource allocation information, whether hopping is enabled, whether mirroring is enabled, and whether hopping is intra-subframe and inter-subframe hopping or inter-subframe hopping. Data is transmitted via the determined resource from the UE to a Node B