Abstract:
A semiconductor process simulation method includes classifying a semiconductor process simulation into a plurality of blocks based on an annealing simulation, performing a shape simulation corresponding to a block selected from the plurality of blocks, and performing at least two ion implantation simulations among a plurality of ion implantation simulations corresponding to the selected block in parallel, based on result data of the shape simulation corresponding to the selected block.
Abstract:
An image sensor including a substrate having a first, a first device isolation region adjacent to the first surface and defining a unit pixel, a transfer gate on the first surface at an edge of the unit pixel, a photoelectric conversion part in the substrate and adjacent to a first side surface of the transfer gate, and a floating diffusion region in the substrate and adjacent to a second side surface of the transfer gate. The second side surface faces the first side surface. The first device isolation region is spaced apart from the second side surface. The substrate and the first device isolation region are doped with impurities having a first conductivity. A first impurity concentration of the first device isolation region is greater than a second impurity concentration of the substrate.
Abstract:
An image sensor comprising a substrate including an upper surface and a lower surface opposite each other and extending in a first direction and a second direction, a first isolation region in the substrate and apart from the upper surface in a third direction perpendicular to the first direction and second direction, the first isolation region defining a boundary of a photoelectric conversion region, a second isolation region in the substrate and extending in the third direction from the lower surface to the first isolation region, a plurality of transistors on the upper surface in the photoelectric conversion region, and a photoelectric conversion device in the substrate in the photoelectric conversion region. The first isolation region includes a potential well doped with an impurity of a first conductivity type, and the second isolation region includes an insulating material layer.
Abstract:
An image sensor including a substrate having a first, a first device isolation region adjacent to the first surface and defining a unit pixel, a transfer gate on the first surface at an edge of the unit pixel, a photoelectric conversion part in the substrate and adjacent to a first side surface of the transfer gate, and a floating diffusion region in the substrate and adjacent to a second side surface of the transfer gate. The second side surface faces the first side surface. The first device isolation region is spaced apart from the second side surface. The substrate and the first device isolation region are doped with impurities having a first conductivity. A first impurity concentration of the first device isolation region is greater than a second impurity concentration of the substrate.
Abstract:
A display system may include a system board configured to compare image signals of a current and previous frame and configured to output the image signals of the current frame and a comparison result; a display panel configured to receive data signals in response to gate signals and configured to include pixels for displaying images corresponding to the data signals; a timing controller configured to output image signals and control signals; a gate driving unit configured to provide the gate signals to the pixels in response to the control signals; and/or a data driving unit configured to store the image signals provided from the timing controller and configured to convert the image signals into the data signals in response to the control signals, the data signals being provided to the pixels.
Abstract:
An image sensor including a substrate having a first, a first device isolation region adjacent to the first surface and defining a unit pixel, a transfer gate on the first surface at an edge of the unit pixel, a photoelectric conversion part in the substrate and adjacent to a first side surface of the transfer gate, and a floating diffusion region in the substrate and adjacent to a second side surface of the transfer gate. The second side surface faces the first side surface. The first device isolation region is spaced apart from the second side surface. The substrate and the first device isolation region are doped with impurities having a first conductivity. A first impurity concentration of the first device isolation region is greater than a second impurity concentration of the substrate.