Abstract:
A method and apparatus are provided for transmitting and receiving an SRS. The method includes determining a number of single-carrier frequency division multiple access (SC-FDMA) symbols in an uplink pilot time slot (UpPTS); receiving index information for an SRS; determining an SRS offset, based on the index information; and transmitting the SRS, based on the SRS offset. If the index information includes an integer from 0 to 9, if the UpPTS includes two SC-FDMA symbols, a first symbol is indicated by SRS offset 0 and a second symbol is indicated by SRS offset 1, if the UpPTS includes one SC-FDMA symbol, the first symbol is indicated by the SRS offset 1. If the index information includes the integer from 0 to 9, the SRS is transmitted twice in a period of 5 ms and the SRS offset indicated by the index information is based on an offset index table.
Abstract:
A method and apparatus are provided for transmitting an uplink Sounding Reference Signal (SRS) by a User Equipment (UE). The method includes receiving information related to an SRS period and an offset for an SRS transmission; generating the uplink SRS; and when the information indicates the SRS period is 2 ms, transmitting the SRS in two Single Carrier Frequency Division Multiple Access (SCFDMA) symbols in a half frame according to the offset for the SRS transmission. When the information indicates the SRS period is 2 ms and a length of an Uplink Pilot Time Slot (UpPTS) in the half frame is two symbols, a first symbol in the UpPTS is indicated by offset 0 and a second symbol in the UpPTS is indicated by offset 1.
Abstract:
An apparatus and a method for feeding back data receiving status, applied to a system, are provided. The method includes sequencing, by a User Equipment (UE), downlink subframes for transmitting data with respect to each Component Carrier (CC), generating receiving status feedback information for the first X downlink subframes with respect to each CC according to the result of the sequencing, where X≦M, wherein M is the number of downlink subframes on each CC, and transmitting the receiving status feedback information generated with respect to each CC to a base station. Accordingly, the UE will not misinterpret the receiving status for the downlink subframes due to inconsistencies with the base station between transmitting and receiving feedback. This affects the Hybrid Automatic Repeat Request (HARQ) transmission, saves the uplink overheads occupied by the receiving status feedback information, and increases the uplink coverage area.
Abstract:
Disclosed is a method for detachment of a mobile set including receiving, by a service node of a communication system, a detachment request from the mobile set, transmitting, by the service node of the communication system, a delete context request message for the mobile set to a first service node of another communication system, and transmitting, by the service node, a detachment indicator to a second service node of the another communication system, wherein the service node of the communication system is different from the service node of the another communication, wherein both the service node of the communication system and the first service node of the another communication system store context information related to the mobile set, and wherein the mobile set moves between the service node of the communication system and the first service node of the another communication system without an area updating.
Abstract:
Base Station (BS) and User Equipment (UE) apparatuses for configuring a Random Access CHannel (RACH), and methods thereof, are provided. The method for a BS to configure a RACH includes generating configuration information on RACH resources, transmitting the configuration information on the RACH resources to a UE, receiving a random access preamble multiplexed on a plurality of continuous RACH resources from the UE, extracting the random access preamble multiplexed on the plurality of continuous RACH resources, and detecting the extracted random access preamble. The method for a UE to configure a RACH includes receiving configuration information on RACH resources from a BS, selecting occupied RACH resources among a plurality of continuous RACH resources, generating a random access preamble, multiplexing the generated random access preamble on the selected RACH resources, and transmitting the random access preamble on the selected RACH resources to the BS.
Abstract:
The method for establishing a connection by a HNB comprising operations of: the HNB transmitting an “attachment request” message to an operation and maintenance center (OMC); the OMC transmitting an “attachment response” message to the MB; the HNB establishing a connection with an MME indicated by the “attachment response” message. With the method proposed, a UE can switch between HNBs in the same CSG through interface X2. Meanwhile, such information as the radio resource management and so on can be exchanged between two HNBs.
Abstract:
A method and apparatus are provided for transmitting and receiving an uplink Sounding Reference Signal (SRS). The method includes determining a number of single-carrier frequency division multiple access (SC-FDMA) symbols in an uplink pilot time slot (UpPTS); receiving index information for a sounding reference signal (SRS); determining an SRS offset, based on the index information; and transmitting the SRS, based on the SRS offset. If the index information includes an integer from 0 to 9, and if the UpPTS includes two SC-FDMA symbols, a first symbol is indicated by SRS offset 0 and a second symbol is indicated by SRS offset 1. If the index information includes an integer from 0 to 9, and if the UpPTS includes one SC-FDMA symbol, a first symbol is indicated by the SRS offset 1.
Abstract:
A method and apparatus are provided for transmitting and receiving an SRS. The method includes determining a number of SC-FDMA symbols in an UpPTS; receiving index information for an SRS; determining an SRS offset and an SRS period, based on the index information; and transmitting the SRS, based on the SRS offset and the SRS period. If the index information includes an integer from 10 to 644, the SRS period is selected among 5 ms to 320 ms. If the index information includes an integer from 0 to 9, the SRS is transmitted twice, the SRS offset is based on an offset index table, and if the UpPTS includes two SC-FDMA symbols, a first symbol is indicated by SRS offset 0 and a second symbol is indicated by SRS offset 1, if the UpPTS includes one SC-FDMA symbol, the first symbol is indicated by the SRS offset 1.
Abstract:
Base Station (BS) and User Equipment (UE) apparatuses for configuring a Random Access CHannel (RACH), and methods thereof, are provided. The method for a BS to configure a RACH includes generating configuration information on RACH resources, transmitting the configuration information on the RACH resources to a UE, receiving a random access preamble multiplexed on a plurality of continuous RACH resources from the UE, extracting the random access preamble multiplexed on the plurality of continuous RACH resources, and detecting the extracted random access preamble. The method for a UE to configure a RACH includes receiving configuration information on RACH resources from a BS, selecting occupied RACH resources among a plurality of continuous RACH resources, generating a random access preamble, multiplexing the generated random access preamble on the selected RACH resources, and transmitting the random access preamble on the selected RACH resources to the BS.
Abstract:
An apparatus and a method for feeding back data receiving status, applied to a system, are provided. The method includes sequencing, by a User Equipment (UE), downlink subframes for transmitting data with respect to each Component Carrier (CC), generating receiving status feedback information for the first X downlink subframes with respect to each CC according to the result of the sequencing, where X≤M, wherein M is the number of downlink subframes on each CC, and transmitting the receiving status feedback information generated with respect to each CC to a base station. Accordingly, the UE will not misinterpret the receiving status for the downlink subframes due to inconsistencies with the base station between transmitting and receiving feedback. This affects the Hybrid Automatic Repeat Request (HARQ) transmission, saves the uplink overheads occupied by the receiving status feedback information, and increases the uplink coverage area.