Abstract:
Methods and apparatuses are provided for transmitting and receiving information. A User Equipment (UE) identifies first information for a cyclic shift value, transmitted from a Node B. The UE identifies second information for the cyclic shift value, transmitted from the Node B. The UE obtains a sequence based on a Zadoff-Chu sequence and the cyclic shift value defined based on the first information and the second information. The UE transmits the sequence in a Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbol to the Node B. The SC-FDMA symbol is predefined among a plurality of SC-FDMA symbols in a slot of a subframe.
Abstract:
Methods and apparatuses are provided for transmitting and receiving information. A User Equipment (UE) receives information related to a cyclic shift value α transmitted from a Node B. The UE obtains a reference sequence based on a Zadoff-Chu sequence and ejα. The UE transmits the reference sequence in a Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbol to the Node B. The SC-FDMA symbol is predefined among a plurality of SC-FDMA symbols in a slot of a subframe.
Abstract:
Methods and apparatuses are provided for transmitting and receiving information. A User Equipment (UE) obtains a sequence based on a Zadoff-Chu sequence and ejα, where a cyclic shift value α is defined per Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbol. The UE generates a signal by using information and the sequence. The UE transmits the signal in a SC-FDMA symbol to a Node B.
Abstract:
Methods and apparatuses are provided for transmitting and receiving information. A User Equipment (UE) obtains a sequence based on a Zadoff-Chu sequence and ejα, where a cyclic shift value α is defined per Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbol. The UE generates a signal by using information and the sequence. The UE transmits the signal in a SC-FDMA symbol to a Node B.
Abstract:
A method for configuring gain factors in a WCDMA telecommunication system is provided in which the gain factor for defining power required for normal reception of uplink data in an environment supporting an uplink service over an E-DCH can be configured using minimal signaling information. First gain factors for first TFs corresponding to a part of a TF set including a plurality of TFs available for an uplink service are received. One of the first TFs is determined as a reference TF for a second TF other than the first TFs in the TF set. Then, a second gain factor for the second TF is calculated using the first gain factor for the determined reference TF. The second gain factor is used for transmitting or receiving uplink data.
Abstract:
Base Station (BS) and User Equipment (UE) apparatuses for configuring a Random Access CHannel (RACH), and methods thereof, are provided. The method for a BS to configure a RACH includes generating configuration information on RACH resources, transmitting the configuration information on the RACH resources to a UE, receiving a random access preamble multiplexed on a plurality of continuous RACH resources from the UE, extracting the random access preamble multiplexed on the plurality of continuous RACH resources, and detecting the extracted random access preamble. The method for a UE to configure a RACH includes receiving configuration information on RACH resources from a BS, selecting occupied RACH resources among a plurality of continuous RACH resources, generating a random access preamble, multiplexing the generated random access preamble on the selected RACH resources, and transmitting the random access preamble on the selected RACH resources to the BS.
Abstract:
Base Station (BS) and User Equipment (UE) apparatuses for configuring a Random Access CHannel (RACH), and methods thereof, are provided. The method for a BS to configure a RACH includes generating configuration information on RACH resources, transmitting the configuration information on the RACH resources to a UE, receiving a random access preamble multiplexed on a plurality of continuous RACH resources from the UE, extracting the random access preamble multiplexed on the plurality of continuous RACH resources, and detecting the extracted random access preamble. The method for a UE to configure a RACH includes receiving configuration information on RACH resources from a BS, selecting occupied RACH resources among a plurality of continuous RACH resources, generating a random access preamble, multiplexing the generated random access preamble on the selected RACH resources, and transmitting the random access preamble on the selected RACH resources to the BS.
Abstract:
A method for configuring gain factors in a WCDMA telecommunication system is provided in which the gain factor for defining power required for normal reception of uplink data in an environment supporting an uplink service over an E-DCH can be configured using minimal signaling information. First gain factors for first TFs corresponding to a part of a TF set including a plurality of TFs available for an uplink service are received. One of the first TFs is determined as a reference TF for a second TF other than the first TFs in the TF set. Then, a second gain factor for the second TF is calculated using the first gain factor for the determined reference TF. The second gain factor is used for transmitting or receiving uplink data.
Abstract:
Base Station (BS) and User Equipment (UE) apparatuses for configuring a Random Access CHannel (RACH), and methods thereof, are provided. The method for a BS to configure a RACH includes generating configuration information on RACH resources, transmitting the configuration information on the RACH resources to a UE, receiving a random access preamble multiplexed on a plurality of continuous RACH resources from the UE, extracting the random access preamble multiplexed on the plurality of continuous RACH resources, and detecting the extracted random access preamble. The method for a UE to configure a RACH includes receiving configuration information on RACH resources from a BS, selecting occupied RACH resources among a plurality of continuous RACH resources, generating a random access preamble, multiplexing the generated random access preamble on the selected RACH resources, and transmitting the random access preamble on the selected RACH resources to the BS.
Abstract:
Methods and apparatuses are provided for transmitting and receiving information. A User Equipment (UE) identifies a sequence based on a Zadoff-Chu sequence and ejα, where a cyclic shift value α is defined per cell. The UE identifies information for an orthogonal sequence. The UE generates a signal by using the information, the sequence and the orthogonal sequence. The UE transmits the signal in a Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbol to a Node B.