Abstract:
Methods and apparatuses are provided for transmitting and receiving information. A User Equipment (UE) identifies a sequence based on a Zadoff-Chu sequence and ejα, where a cyclic shift value α is defined per cell. The UE identifies information for an orthogonal sequence. The UE generates a signal by using the information, the sequence and the orthogonal sequence. The UE transmits the signal in a Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbol to a Node B.
Abstract:
Methods and apparatuses are provided for transmitting control information in an SC-FDMA system. A UE determines cyclic shift values for SC-FDMA symbols. The UE acquires cyclic shift sequences by the cyclic shift values. The UE applies the cyclic shift sequences to the control information on an SC-FDMA symbol basis. The control information applied with the cyclic shift sequences in the SC-FDMA symbols is transmitted to a Node B.
Abstract:
Methods and apparatuses are provided for transmitting and receiving information. A User Equipment (UE) receives information for a cyclic shift value and information for an orthogonal sequence transmitted from a Node B. The cyclic shift value is defined per Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbol and the orthogonal sequence is defined per slot. The UE obtains a reference sequence based on the cyclic shift value and the orthogonal sequence. The UE transmits the reference sequence in a SC-FDMA symbol to the Node B. The SC-FDMA symbol is predefined among a plurality of SC-FDMA symbols in a slot of a subframe.
Abstract:
Methods and apparatuses are provided for transmitting and receiving information. A User Equipment (UE) identifies first information for a cyclic shift value, transmitted from a Node B. The UE identifies second information for the cyclic shift value, transmitted from the Node B. The UE obtains a sequence based on a Zadoff-Chu sequence and the cyclic shift value defined based on the first information and the second information. The UE transmits the sequence in a Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbol to the Node B. The SC-FDMA symbol is predefined among a plurality of SC-FDMA symbols in a slot of a subframe.
Abstract:
Methods and apparatuses are provided for transmitting and receiving information. A User Equipment (UE) identifies first information for a cyclic shift value, transmitted from a Node B. The UE identifies second information for the cyclic shift value, transmitted from the Node B. The UE obtains a sequence based on a Zadoff-Chu sequence and the cyclic shift value defined based on the first information and the second information. The UE transmits the sequence in a Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbol to the Node B. The SC-FDMA symbol is predefined among a plurality of SC-FDMA symbols in a slot of a subframe.
Abstract:
Methods and apparatuses are provided for transmitting and receiving information. A User Equipment (UE) receives information related to a cyclic shift value α transmitted from a Node B. The UE obtains a reference sequence based on a Zadoff-Chu sequence and ejα. The UE transmits the reference sequence in a Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbol to the Node B. The SC-FDMA symbol is predefined among a plurality of SC-FDMA symbols in a slot of a subframe.
Abstract:
Methods and apparatuses are provided for transmitting and receiving information. A User Equipment (UE) obtains a sequence based on a Zadoff-Chu sequence and ejα, where a cyclic shift value α is defined per Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbol. The UE generates a signal by using information and the sequence. The UE transmits the signal in a SC-FDMA symbol to a Node B.
Abstract:
Methods and apparatuses are provided for transmitting and receiving information. A User Equipment (UE) obtains a sequence based on a Zadoff-Chu sequence and ejα, where a cyclic shift value α is defined per Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbol. The UE generates a signal by using information and the sequence. The UE transmits the signal in a SC-FDMA symbol to a Node B.