摘要:
The present invention relates to a multi-input multi-output (MIMO) system for enhancing transmission performance. The MIMO system uses space-time encoding and transmit antenna selection methods, and includes a transmitter (100) and a receiver (200). The transmitter (100) includes N transmit antennas (130-1, 130-4) that are more than M tansrni antennas (130-1, 130-3) used for transmitting a signal to space channel, selects the M transmit antennas (130-1, 130-3) among the N transmit antennas (130-3 130-4), and transmits symbol by space-time encoding the symbol. The receiver (200) includes M receive antenna (120-1, 210-2) for receiving a signal from the space channel, detects an information symbol by using the signal received through the receive antenna (210-1, 210-2), generates transmit antenna selection information for selecting M transmit antennas (130-1, 130-3) among transmit antennas (i30-1, . . . 7130-4) with reference to a channel estimate, and returns the information to the transmitter.
摘要:
A receiver according to an exemplary embodiment of the present invention receives a transmitted signal, converts the signal to a predetermined symbol, and estimates channel information including a channel gain of a channel of the transmitted signal. In addition, the receiver generates an intermediate processing value for decoding the signal based on the estimated channel information and the symbol, and normalizes the intermediate processing value to the channel gain to generate a reference value. The generated reference value is used for a soft-decision value for decoding the signal. In addition, when the signal is decoded by using a hard-decision value, a constellation point value that is closest to the reference values is generated and set as the hard-decision value.
摘要:
The present invention relates to a multi-input multi-output (MIMO) system for enhancing transmission performance. The MIMO system uses space-time encoding and transmit antenna selection methods, and includes a transmitter (100) and a receiver (200). The transmitter (100) includes N transmit antennas (130-1, 130-4) that are more than M transmit antennas (130-1, 130-3) used for transmitting a signal to space channel, selects the M transmit antennas (130-1, 130-3) among the N transmit antennas (130-3 130-4), and transmits symbol by space-time encoding the symbol. The receiver (200) includes M receive antenna (120-1, 210-2) for receiving a signal from the space channel, detects an information symbol by using the signal received through the receive antenna (210-1, 210-2), generates transmit antenna selection information for selecting M transmit antennas (130-1, 130-3) among transmit antennas (i30-1, . . . 7130-4) with reference to a channel estimate, and returns the information to the transmitter.
摘要:
A space-time code used for a transmitter to transmit a plurality of data symbols to a receiver in a MIMO system, the space-time code including a code word matrix for transmitting an amount of data symbols corresponding to a product of the number of transmit antennas and a spatial multiplexing rate during one block period, wherein a row index indicates combined signals transmitted through different transmit antennas and a column index indicates time slots that correspond to the number of transmit antennas, and wherein the number of data symbols allocated to each transmit antenna in a code block corresponds to the spatial multiplexing rate, and the data symbols are combined by different combining coefficients for each transmit antenna at every time slot, and simultaneously transmitted through different transmit antennas, and each transmit antenna transmits a different set of data symbols at every time slot.
摘要:
A receiver according to an exemplary embodiment of the present invention receives a transmitted signal, converts the signal to a predetermined symbol, and estimates channel information including a channel gain of a channel of the transmitted signal. In addition, the receiver generates an intermediate processing value for decoding the signal based on the estimated channel information and the symbol, and normalizes the intermediate processing value to the channel gain to generate a reference value. The generated reference value is used for a soft-decision value for decoding the signal. In addition, when the signal is decoded by using a hard-decision value, a constellation point value that is closest to the reference values is generated and set as the hard-decision value.
摘要:
A space-time code used for a transmitter to transmit a plurality of data symbols to a receiver in a MIMO system, the space-time code including a code word matrix for transmitting an amount of data symbols corresponding to a product of the number of transmit antennas and a spatial multiplexing rate during one block period, wherein a row index indicates combined signals transmitted through different transmit antennas and a column index indicates time slots that correspond to the number of transmit antennas, and wherein the number of data symbols allocated to each transmit antenna in a code block corresponds to the spatial multiplexing rate, and the data symbols are combined by different combining coefficients for each transmit antenna at every time slot, and simultaneously transmitted through different transmit antennas, and each transmit antenna transmits a different set of data symbols at every time slot.
摘要:
A mobile station transmitting and receiving method and a corresponding mobile station transmitter and receiver of a smart antenna system for forming uplink eigenbeams of the OFDM/TDD (orthogonal frequency division multiplex/time division duplex), wherein OFDM symbols are received from a base station through a downlink via multiple antennas (250) and an FFT (fast Fourier transform) is performed on the received OFDM symbols by the FFT units (270). By means of a channel estimator (290) the channels are estimated and a beam weight generator (310) generates respective beam weights from the channels of the respective pilot tones of the respective subcarriers according to the channel estimation result. A beam weight multiplier (230) forms the uplink beam by multiplying the respective beam weights with the output of the signal repeater (220) and IFFT units (240) generate respective OFDM symbols which are transmitted via multiple antennas (250) through an uplink.
摘要:
Disclosed is a MIMO-OFDM system, wherein the transmitter comprises a serial/parallel converter for converting continuously inputted symbols of the number of subcarriers to K parallel signals; a signal reproducer for reproducing K parallel signals by the number of transmit antennas L an eigenmode generator for generating eigenbeam of the reproduced signals outputted from the signal reproducer at each subcarrier, on the basis of Nf eigenbeam forming vectors which are fed back long-term and information of a best eigenbeam forming vector at each subcarrier which is fed back short-term, through the feedback device; and a plurality of inverse Fourier converters for receiving the signals outputted from the eigenmode generator and generating an OFDM symbol.
摘要:
Disclosed is a MIMO-OFDM system, wherein the transmitter comprises a serial/parallel converter for converting continuously inputted symbols of the number of subcarriers to K parallel signals; a signal reproducer for reproducing K parallel signals by the number of transmit antennas L an eigenmode generator for generating eigenbeam of the reproduced signals outputted from the signal reproducer at each subcarrier, on the basis of Nf eigenbeam forming vectors which are fed back long-term and information of a best eigenbeam forming vector at each subcarrier which is fed back short-term, through the feedback device; and a plurality of inverse Fourier converters for receiving the signals outputted from the eigenmode generator and generating an OFDM symbol.
摘要:
A mobile station transmitting and receiving method and a corresponding mobile station transmitter and receiver of a smart antenna system for forming uplink eigenbeams of the OFDM/TDD (orthogonal frequency division multiplex/time division duplex), wherein OFDM symbols are received from a base station through a downlink via multiple antennas (250) and an FFT (fast Fourier transform) is performed on the received OFDM symbols by the FFT units (270). By means of a channel estimator (290) the channels are estimated and a beam weight generator (310) generates respective beam weights from the channels of the respective pilot tones of the respective subcarriers according to the channel estimation result. A beam weight multiplier (230) forms the uplink beam by multiplying the respective beam weights with the output of the signal repeater (220) and IFFT units (240) generate respective OFDM symbols which are transmitted via multiple antennas (250) through an uplink.