摘要:
An image-capturing element includes a pair of photoelectric conversion cells that pupil-divide object light in a first direction and in a second direction and that output a ranging signal. The photoelectric conversion cells include a photoreceiving element configured to receive the object light and generate a ranging signal, a first light-shielding layer having a first light-transmitting area, and a second light-shielding layer having a second light-transmitting area. The photoelectric conversion cells include a first photoelectric conversion cell in which the first light-transmitting area is offset in the first direction on the first light-shielding layer and the second light-transmitting area is offset in the second direction on the second light-shielding layer, and a second photoelectric conversion cell in which the first light-transmitting area is offset in the second direction on the first light-shielding layer and the second light-transmitting area is offset in the first direction on the second light-shielding layer.
摘要:
An image-capturing element includes a pair of photoelectric conversion cells that pupil-divide object light in a first direction and in a second direction and that output a ranging signal. The photoelectric conversion cells include a photoreceiving element configured to receive the object light and generate a ranging signal, a first light-shielding layer having a first light-transmitting area, and a second light-shielding layer having a second light-transmitting area. The photoelectric conversion cells include a first photoelectric conversion cell in which the first light-transmitting area is offset in the first direction on the first light-shielding layer and the second light-transmitting area is offset in the second direction on the second light-shielding layer, and a second photoelectric conversion cell in which the first light-transmitting area is offset in the second direction on the first light-shielding layer and the second light-transmitting area is offset in the first direction on the second light-shielding layer.
摘要:
A technology of a phase-difference detecting image pickup element that can precisely perform focus detection even if the position of an exit pupil with respect to the image pickup element changes is provided. The image pickup element of an image pickup device includes an AF pixel pair 11g that receive an object light beam transmitted through a pair of portion areas Qc and Qd whose areas become the same in an exit pupil at a position of distance Hm from the image pickup element. The AF pixel pair 11g includes light-intercepting portions 131 and 132 where respective light-transmitting portions that define the pair of portion areas Qc and Qd are provided. In addition, the image pickup element also includes a different AF pixel pair whose disposition of light-intercepting portions 131 and 132 are made different so that the areas of the pair of portion areas in the exit pupil at a position of a distance Hm from the image pickup element are the same. By this, even if the position of the exit pupil is changed by, for example, a lens replacement, the focus detection can be precisely performed by a phase-difference detection method by selecting a pixel pair in accordance with the position of the exit pupil.
摘要:
An image pickup device includes a group of photoelectric conversion cells that output distance-measurement signals for phase difference detection. Each photoelectric conversion cell includes a photodetector and a pupil restricting unit. The photodetector generates the distance-measurement signal. The pupil restricting unit restricts a size of a pupil area, from which arrival light has exited, to a predetermined size in an exit pupil of a taking optical system, object light exiting from the exit pupil of the taking optical system, the arrival light arriving at the photodetector. The predetermined size is less than half a size of an entire area of the exit pupil.
摘要:
An image-capturing element includes a group of first pixels configured to receive object light and generate an image signal representing an object image; and a group of second pixels configured to receive the object light and generate a ranging signal for detecting a phase difference. The second pixels each include an optical filter on a light-receiving side thereof. The optical filter allows visible light in a wavelength range wider than a wavelength range of visible light that is allowed by a green primary-color filter to be transmitted therethrough within the object light to be transmitted therethrough.
摘要:
A phase-difference detecting image pickup element performs focus detection even if the position of an exit pupil with respect to the image pickup element changes. A pixel pair receives an object light beam transmitted through a pair of portion areas whose areas become the same in an exit pupil at a particular distance from the image pickup element. The pixel pair includes light-intercepting portions that define the pair of portion areas. A different pixel pair whose light-intercepting portions are different so that the areas of the pair of portion areas in the exit pupil the particular distance from the image pickup element are the same. By this, even if the position of the exit pupil is changed by, for example, a lens replacement, focus detection can be performed by a phase-difference detection method by selecting a pixel pair in accordance with the position of the exit pupil.
摘要:
An image pickup device includes a group of photoelectric conversion cells that output distance-measurement signals for phase difference detection. Each photoelectric conversion cell includes a photodetector and a pupil restricting unit. The photodetector generates the distance-measurement signal. The pupil restricting unit restricts a size of a pupil area, from which arrival light has exited, to a predetermined size in an exit pupil of a taking optical system, object light exiting from the exit pupil of the taking optical system, the arrival light arriving at the photodetector. The predetermined size is less than half a size of an entire area of the exit pupil.
摘要:
An imaging device includes an image pickup device having an arrangement of photoelectric converting units, the arrangement in which a plurality of pairs of photoelectric converting units are arranged along a predetermined direction, each pair of photoelectric converting units receiving light beams of a subject passing through partial areas in a pair that are lopsided in reverse to each other along the predetermined direction in an exit pupil of a shooting optical system, and a focus detector for performing focus detection of a phase-difference detecting technique according to data obtained from the pair of photoelectric converting units in the arrangement of the photoelectric converting units. The focus detector corrects the data according to a correction amount corresponding to a positional shift amount from the normalized position, and performs focus detection of the phase-difference detecting technique according to the corrected data.
摘要:
An image pickup element includes a light-receiving portion having a matrix arrangement formed by disposing first-direction arrays, each having photoelectric conversion portions arranged in a first direction with a predetermined gap maintained therebetween, in a second direction orthogonal to the first direction, and micro-lenses provided above the light-receiving portion. A certain first-direction array in the matrix arrangement is provided with a pair of photoelectric conversion portions that optically receive, via a pair of micro-lenses, photographic-subject light beams passing through a pair of segmental regions in an exit pupil of a photographic optical system, the pair of segmental regions being disposed biasedly in opposite directions from each other in the first direction. The pair of micro-lenses is disposed such that light axes thereof extend through vicinities of edges of the pair of photoelectric conversion portions, the edges being the farthest edges from each other in the first direction.
摘要:
An imaging device includes an image pickup device having an arrangement of photoelectric converting units, the arrangement in which a plurality of pairs of photoelectric converting units are arranged along a predetermined direction, each pair of photoelectric converting units receiving light beams of a subject passing through partial areas in a pair that are lopsided in reverse to each other along the predetermined direction in an exit pupil of a shooting optical system, and a focus detector for performing focus detection of a phase-difference detecting technique according to data obtained from the pair of photoelectric converting units in the arrangement of the photoelectric converting units. The focus detector corrects the data according to a correction amount corresponding to a positional shift amount from the normalized position, and performs focus detection of the phase-difference detecting technique according to the corrected data.