Abstract:
An information processor includes: a similarity data generation portion generating similarity data that represents the calculated similarity to the image in the reference block in association with a position within the search range; a result evaluation portion detecting a position with a maximum similarity value for each piece of the similarity data and screening the detection result by making a given evaluation of the similarity; a depth image generation portion finding a parallax for each of the reference blocks using the detection result validated as a result of screening, calculating a position of a subject in a depth direction on a basis of the parallax, and generating a depth image by associating the position of the subject in the depth direction with an image plane; and an output information generation section performing given information processing on a basis of the subject position in a three-dimensional space using the depth image and outputting the result of information processing.
Abstract:
A viewpoint detection unit detects a user viewing a stereoscopic image, including a parallax image of a subject as viewed from a predetermined position defined as a reference view position, and tracks a viewpoint of the detected user. A motion parallax correction unit determines, if a speed of movement of the viewpoint becomes equal to or higher than a predetermined level, an amount of motion parallax correction for the parallax image, on the basis of an amount of movement of the viewpoint, so as to generate a stereoscopic image corrected for motion parallax, generates, if the speed of movement of the viewpoint subsequently becomes lower than a predetermined level, a stereoscopic image by changing the amount of motion parallax correction in steps until the parallax image return to parallax images as seen from the reference view position.
Abstract:
An image pickup apparatus includes: an image data production unit configured to produce data of a plurality of kinds of images from an image frame obtained by picking up an image of an object as a moving picture for each of pixel strings which configure a row; and an image sending unit configured to extract a pixel string in a region requested from a host terminal from within the data of each of the plurality of kinds of images and connect the pixel strings to each other for each unit number of pixels for connection determined on the basis of a given rule to produce a stream and then transmit the stream to the host terminal. The image sending unit switchably determines whether the unit number of pixels for connection is to be set to a fixed value or a variable value in response to the kind of each image.
Abstract:
An image storage section 48 stores shot image data with a plurality of resolutions transmitted from an imaging device. Depth images 152 with a plurality of resolutions are generated using stereo images with a plurality of resolution levels from the shot image data (S10). Next, template matching is performed using a reference template image 154 that represents a desired shape and size, thus extracting a candidate area for a target picture having the shape and size for each distance range associated with one of the resolutions (S12). A more detailed analysis is performed on the extracted candidate areas using the shot image stored in the image storage section 48 (S14). In some cases, a further image analysis is performed based on the analysis result using a shot image with a higher resolution level (S16a and S16b).
Abstract:
There is provided an image processing apparatus including a plurality of imaging units included in a stereo camera, the plurality of imaging units being configured to image a first chart pattern including a pattern that is a plurality of feature points and a mirror surface, and a correction parameter calculation unit configured to calculate a correction parameter that corrects a gap of the plurality of imaging units, based on the pattern included in the first chart pattern imaged by the plurality of imaging units and a pattern mirrored in the mirror surface.
Abstract:
Data of a moving image has a hierarchical structure comprising a 0-th layer, a first layer, a second layer, and a third layer in a z axis direction. Each layer is composed of moving image data of a single moving image expressed in different resolutions. Both the coordinates of a viewpoint at the time of the display of a moving image and a corresponding display area are determined in a virtual three-dimensional space formed by an x axis representing the horizontal direction of the image, a y axis representing the vertical direction of the image, and a z axis representing the resolution. By providing a switching boundary for layers with respect to the z axis, the layers of the moving image data used for frame rendering are switched in accordance with the value of z of the frame coordinates.
Abstract:
Methods and Apparatus provide for obtaining a data sequence representative of a three-dimensional parameter space; forming a plurality of coding units by dividing, in three dimensions, the data sequence subject; and generating, for each of the plurality of coding units: (i) a palette defined by two representative values, and (ii) a plurality of indices, each index representing a respective original data point as a value, determined by linear interpolation, to be one of, or an intermediate value between, the representative values, and setting the palette and the plurality of indices for each of the coding units as compressed data.
Abstract:
An information processor includes: a similarity data generation portion generating, for a position within the search range, similarity data that represents the calculated similarity to the image in the reference block in association with the position within the search range; a similarity correction portion smoothing the similarity data in a direction of space on a basis of similarity data; a result evaluation portion detecting a position with a maximum similarity value in each piece of the smoothed similarity data; a depth image generation portion generating a depth image by associating the position of the subject in the depth direction with an image plane; and an output information generation section performing given information processing on a basis of the subject position in a three-dimensional space using the depth image and outputting the result of information processing.
Abstract:
An information processing device that detects the position of a subject shot by a camera in a three-dimensional space is provided. The information processing device includes a depth image acquiring section that acquires a depth image in which the distance of a subject in the depth direction from the camera is represented as a pixel value on an image plane, a spatial structure identifying section that identifies the position of a plane forming a predetermined angle with a gravity vector among subject surfaces by detecting a coordinate point collection representing the plane on the basis of the distribution of coordinate points obtained by inverse projection of pixels of the depth image to the three-dimensional space based on the direction of the gravity vector, and a target object extracting section that generates and outputs position information of a predetermined target object on the basis of the position of the plane.
Abstract:
Provided is an image processing apparatus including a hand shape recognition unit that performs hand shape recognition on an input image to detect a position and a size of a hand with a specific shape in the input image, a determination region setting unit that sets a region in a vicinity of the hand on the input image as a determination region used to recognize a gesture performed using the hand, based on the position and the size of the hand, and a gesture recognition unit that recognizes the gesture by monitoring movement of the hand to the determination region.