Abstract:
Embodiments include generating data models that may give semantic meaning for unstructured or structured data that may include data generated and/or received by search engines, including a time series engine. A method includes generating a data model for data stored in a repository. Generating the data model includes generating an initial query string, executing the initial query string on the data, generating an initial result set based on the initial query string being executed on the data, determining one or more candidate fields from one or results of the initial result set, generating a candidate data model based on the one or more candidate fields, iteratively modifying the candidate data model until the candidate data model models the data, and using the candidate data model as the data model.
Abstract:
Embodiments are directed are towards the transparent summarization of events. Queries directed towards summarizing and reporting on event records may be received at a search head. Search heads may be associated with one more indexers containing event records. The search head may forward the query to the indexers the can resolve the query for concurrent execution. If a query is a collection query, indexers may generate summarization information based on event records located on the indexers. Event record fields included in the summarization information may be determined based on terms included in the collection query. If a query is a stats query, each indexer may generate a partial result set from previously generated summarization information, returning the partial result sets to the search head. Collection queries may be saved and scheduled to run and periodically update the summarization information.
Abstract:
A method and system for managing searches of a data set that is partitioned based on a plurality of events. A structure of a search query may be analyzed to determine if logical computational actions performed on the data set is reducible. Data in each partition is analyzed to determine if at least a portion of the data in the partition is reducible. In response to a subsequent or reoccurring search request, intermediate summaries of reducible data and reducible search computations may be aggregated for each partition. Next, a search result may be generated based on at least one of the aggregated intermediate summaries, the aggregated reducible search computations, and a query of adhoc non-reducible data arranged in at least one of the plurality of partitions for the data set.
Abstract:
A method, system, and processor-readable storage medium are directed towards generating a report derived from data, such as event data, stored on a plurality of distributed nodes. In one embodiment the analysis is generated using a “divide and conquer” algorithm, such that each distributed node analyzes locally stored event data while an aggregating node combines these analysis results to generate the report. In one embodiment, each distributed node also transmits a list of event data references associated with the analysis result to the aggregating node. The aggregating node may then generate a global ordered list of data references based on the list of event data references received from each distributed node. Subsequently, in response to a user selection of a range of global event data, the report may dynamically retrieve event data from one or more distributed nodes for display according to the global order.
Abstract:
A method and system for managing searches of a data set that is partitioned based on a plurality of events. A structure of a search query may be analyzed to determine if logical computational actions performed on the data set is reducible. Data in each partition is analyzed to determine if at least a portion of the data in the partition is reducible. In response to a subsequent or reoccurring search request, intermediate summaries of reducible data and reducible search computations may be aggregated for each partition. Next, a search result may be generated based on at least one of the aggregated intermediate summaries, the aggregated reducible search computations, and a query of adhoc non-reducible data arranged in at least one of the plurality of partitions for the data set.