Abstract:
The present disclosure relates to focusing luminescent concentrators wherein directional emission, obtained by placing an absorber/emitter within a microcavity or photonic crystal, may be oriented by a macroscopic concentrator and focused to a point or line for 3D or 2D concentration, respectively. The focusing luminescent concentrators disclosed herein may provide high concentration ratios without the need for tracking, and may reduce re-absorption losses associated with conventional concentrators. The present disclosure further relates to photovoltaic cells and/or optical detector devices comprising a focusing luminescent concentrator. The devices and methods presently disclosed are also useful, for example, in solar, thermal and thermophotovolatic applications.
Abstract:
The present disclosure relates to focusing luminescent concentrators wherein directional emission, obtained by placing an absorber/emitter within a microcavity or photonic crystal, may be oriented by a macroscopic concentrator and focused to a point or line for 3D or 2D concentration, respectively. The focusing luminescent concentrators disclosed herein may provide high concentration ratios without the need for tracking, and may reduce re-absorption losses associated with conventional concentrators. The present disclosure further relates to photovoltaic cells and/or optical detector devices comprising a focusing luminescent concentrator. The devices and methods presently disclosed are also useful, for example, in solar, thermal and thermophotovolatic applications.
Abstract:
The present disclosure generally relates to organic photosensitive optoelectronic devices and polaron pair recombination dynamics to impact efficiency and open circuit voltages of organic solar cells. The present disclosure also relates, in part, to methods of making organic photosensitive optoelectronic devices comprising the same.
Abstract:
The present disclosure generally relates to organic photosensitive optoelectronic devices and polaron pair recombination dynamics to impact efficiency and open circuit voltages of organic solar cells. The present disclosure also relates, in part, to methods of making organic photosensitive optoelectronic devices comprising the same.
Abstract:
Systems and methods for cavity mode enhancement in dye-sensitized solar cells are provided. A dye-sensitized solar cell generally comprises a transparent substrate, an anode layer, an oxide layer, a dye layer, a cathode, and an electrolyte. The anode layer is deposited on a surface of the transparent substrate. The oxide layer is deposited on the anode layer and the dye is deposited on the oxide layer. A cathode is disposed adjacent to the dye layer and an electrolyte is disposed between the anode layer and the cathode.