Abstract:
A transducer system with a transducer and circuitry for applying a pulse train to excite the transducer. The circuitry for applying a pulse train selects a first set having a first number of pulses at a first frequency and a second set of pulses having a second number of pulses at a second frequency differing from the first frequency. At least one pulse from the first set is located in the pulse train between one or more of the pulses at the second frequency.
Abstract:
A transducer system. The system comprises a transducer and circuitry for applying an excitation waveform to excite the transducer during an excitation period. The circuitry for applying has: (i) circuitry for applying a first waveform at a first frequency; and (ii) circuitry for applying a second waveform at a second frequency differing from the first frequency.
Abstract:
A method of ultrasound flow metering includes applying a first and second pulse train to an ultrasound transducer pair (T1, T2) positioned for coupling ultrasonic waves therebetween. Responsive to the first pulse train applied to T1, T1 transmits an ultrasonic wave received as received ultrasonic wave (R12) by T2 after propagating through fluid in a pipe. Responsive to the second pulse train applied to T2, T2 transmits an ultrasonic wave received as received ultrasonic wave by (R21) T1 after propagating through the fluid. During the pulse trains, R12 and R21 build up in amplitude to provide excitation portions. The pulse trains are terminated, so that R12 and R21 decay as a damped free oscillation. Windowing is applied to R12 and R21 to generate windowed portions. A signal delay between t12 and t21 (ΔTOF) is calculated using only windowed portions, and a fluid flow is calculated from the ΔTOF.
Abstract:
Mechanical vibration may be sensed by a remotely located ultrasonic sensor. An ultrasonic wave may be transmitted from a transmitter to a vibrating surface, in which the transmitter is separated from the vibrating surface by a distance. A reflected portion of the ultrasonic wave that is reflected from the vibrating surface may be received by a receiver that is also separated from the vibrating surface by a distance. A measure of phase shift amplitude in the reflected portion of the ultrasonic wave may be determined and converted into an amplitude of a vibration of the vibrating surface.
Abstract:
In an embodiment, a system for measuring material flow in a pipe is disclosed. A first transducer is operable to transmit a first signal having a first frequency at a first time and receive a second signal at a second time, and a second transducer spaced apart from the first transducer and is operable to receive the first signal and transmit the second signal having the first frequency. A signal processing circuit communicatively coupled to the first transducer and the second transducer, the signal processing circuit is operable to determine a first envelope of the first signal and a second envelope of the second signal and calculate a flow rate based on the first envelope of the first signal and the second envelope of the second signal.
Abstract:
A transducer system. The system comprises a transducer and circuitry for applying an excitation waveform to excite the transducer during an excitation period. The circuitry for applying has: (i) circuitry for applying a first waveform at a first frequency; and (ii) circuitry for applying a second waveform at a second frequency differing from the first frequency.
Abstract:
A method, system and apparatus is disclosed for auto-tuning a circuit associated with an upstream transducer (UPT) and a circuit associated with a downstream transducer (DNT) for reciprocal operation in an ultrasonic flowmeter. The method includes exchanging signals between the upstream transducer and the downstream transducer; comparing at least one of respective maximum amplitudes of an upstream signal and a downstream signal and respective center frequencies of a Fast Fourier Transform (FFT) of the upstream signal and the downstream signal; and responsive to determining that at least one of the respective maximum amplitudes and the respective center frequencies do not match, correcting the mismatch.
Abstract:
A transducer system with a transducer and circuitry for applying a waveform to excite the transducer during an excitation period. The applying circuitry also comprises circuitry for changing a frequency of the waveform during the excitation period.
Abstract:
In circuitry for applying a pulse train to excite a transducer, the circuitry selects a first set having a first number of pulses at a first frequency and a second set of pulses having a second number of pulses at a second frequency differing from the first frequency. At least one pulse from the first set is located in the pulse train between one or more of the pulses at the second frequency.
Abstract:
A transducer system with a transducer and circuitry for applying a waveform to excite the transducer during an excitation period. The applying circuitry also comprises circuitry for changing a frequency of the waveform during the excitation period.