Abstract:
One or more high-order bit linear branches of a segmented DAC are implemented as R-2R networks geometrically down-scaled from the DAC binary portion by a selected factor. The resulting increase in closely-located mismatch is compensated for by implementing a trim circuit at a low-order end of each such linear branch. The trim circuit is designed with a number of trim steps to compensate for the selected linear branch down-scaling factor. Each trim step switches a resistance into the low-order end of the linear branch resulting in an even resistance increment or decrement at the lumped linear branch output. The trim circuit is calibrated to provide an amount of trim at the linear branch output such that the lumped resistance of the trimmed linear branch matches the lumped resistance of the binary portion within a selected tolerance (e.g., generally +/−0.5 LSB).
Abstract:
An integrated circuit provides a semiconductor die with I/O bond pads, a power bond pad, and a circuit ground pad. Each I/O bond pad is associated with an input circuit that has an input circuit output lead. Sets of digital logic functional circuitry on the die provide different digital logic functions. Each function includes logic input leads and logic output leads. Output circuits each have an output circuit in lead and an output circuit out lead. Strapping structures, such as vias, formed in the semiconductor die electrically couple input circuits to a selected set of digital logic functions and the selected set of digital logic functions to output circuit in leads. Upper level metal conductors couple output circuit out leads and selected I/O bond pads.
Abstract:
An integrated circuit provides a semiconductor die with I/O bond pads, a power bond pad, and a circuit ground pad. Each I/O bond pad is associated with an input circuit that has an input circuit output lead. Sets of digital logic functional circuitry on the die provide different digital logic functions. Each function includes logic input leads and logic output leads. Output circuits each have an output circuit in lead and an output circuit out lead. Strapping structures, such as vias, formed in the semiconductor die electrically couple input circuits to a selected set of digital logic functions and the selected set of digital logic functions to output circuit in leads. Upper level metal conductors couple output circuit out leads and selected I/O bond pads.
Abstract:
An integrated circuit provides a semiconductor die with I/O bond pads, a power bond pad, and a circuit ground pad. Each I/O bond pad is associated with an input circuit that has an input circuit output lead. Sets of digital logic functional circuitry on the die provide different digital logic functions. Each function includes logic input leads and logic output leads. Output circuits each have an output circuit in lead and an output circuit out lead. Strapping structures, such as vias, formed in the semiconductor die electrically couple input circuits to a selected set of digital logic functions and the selected set of digital logic functions to output circuit in leads. Upper level metal conductors couple output circuit out leads and selected I/O bond pads.