Abstract:
A power converter (such as a battery charger) includes a cable configured to deliver a source voltage and current to a load, where the cable is anticipated to drop some voltage as the load current increases. The power converter also includes a regulator having a feedback-adjusting transistor configured to gradually compensate for the dropped cable voltage as the load current increases. The transistor has a gate capacitance and a resistance forming an integrator configured to filter a volt-second product of an output waveshape of the converter to derive an average voltage correlated to the load current as the load current increases. The regulator is configured to increase a gate voltage of the transistor through a threshold region of the transistor and gradually turn the transistor on. The transistor is configured to apply an adjusting resistance coupled to a feedback sensing node of the regulator to increase the source voltage to compensate for the cable voltage drop and improve the load voltage regulation.
Abstract:
A switching power supply includes a transformer having a primary side and a secondary side. The primary side is coupled to a switch for controlling current flow through the primary side and the secondary side generates an output voltage. A controller controls switching of the switch to generate a first power level on the secondary side of the transformer when the power supply is in a stand-by mode and a second power level when the power supply is in an active mode. A monitor samples the output voltage, generates a reference voltage, and generates a wake up signal in response the output voltage being less than the reference voltage. The controller controls the switch in response to the wake up signal to generate the first power level.
Abstract:
A power converter (such as a battery charger) includes a cable configured to deliver a source voltage and current to a load, where the cable is anticipated to drop some voltage as the load current increases. The power converter also includes a regulator having a feedback-adjusting transistor configured to gradually compensate for the dropped cable voltage as the load current increases. The transistor has a gate capacitance and a resistance forming an integrator configured to filter a volt-second product of an output waveshape of the converter to derive an average voltage correlated to the load current as the load current increases. The regulator is configured to increase a gate voltage of the transistor through a threshold region of the transistor and gradually turn the transistor on. The transistor is configured to apply an adjusting resistance coupled to a feedback sensing node of the regulator to increase the source voltage to compensate for the cable voltage drop and improve the load voltage regulation.
Abstract:
On the secondary side of a flyback switching power converter, a compensation diode and a voltage divider with an averaging circuit generate an output current-compensated reference voltage that is proportional to converter output current. The current-compensated reference voltage is added to a regulation feedback controller reference voltage, which in turn adjusts the negative feedback signal to the PWM regulation controller on the primary side in proportion to the converter output current draw. The net effect is to increase the converter output voltage set-point in proportion to the converter output current draw as compensation for a voltage drop in a cable connecting the converter to a powered device. More precisely-regulated voltage levels may be delivered to an input of the powered device as a result.
Abstract:
On the secondary side of a flyback switching power converter, a compensation diode and a voltage divider with an averaging circuit generate an output current-compensated reference voltage that is proportional to converter output current. The current-compensated reference voltage is added to a regulation feedback controller reference voltage, which in turn adjusts the negative feedback signal to the PWM regulation controller on the primary side in proportion to the converter output current draw. The net effect is to increase the converter output voltage set-point in proportion to the converter output current draw as compensation for a voltage drop in a cable connecting the converter to a powered device. More precisely-regulated voltage levels may be delivered to an input of the powered device as a result.