摘要:
The present disclosure relates to systems and methods for providing a hybrid brain-computer-interface (hBCI) that can detect an individual's reinforcement signals (e.g., level of interest, arousal, emotional reactivity, cognitive fatigue, cognitive state, or the like) in and/or response to objects, events, and/or actions in an environment by generating reinforcement signals for improving an AI agent controlling the environment, such as an autonomous vehicle. Although the disclosed subject matter is discussed within the context of an autonomous vehicle virtual reality game in the exemplary embodiments of the present disclosure, the disclosed system can be applicable to any other environment in which the human user's sensory input is to be used to influence actions within the environment. Furthermore, the systems and methods disclosed can use neural, physiological, or behavioral signatures to inform deep reinforcement learning based AI systems to enhance user comfort and trust in automation.
摘要:
The present disclosure relates to systems and methods for providing a hybrid brain-computer-interface (hBCI) that can detect an individual's reinforcement signals (e.g., level of interest, arousal, emotional reactivity, cognitive fatigue, cognitive state, or the like) in and/or response to objects, events, and/or actions in an environment by generating reinforcement signals for improving an AI agent controlling the environment, such as an autonomous vehicle. Although the disclosed subject matter is discussed within the context of an autonomous vehicle virtual reality game in the exemplary embodiments of the present disclosure, the disclosed system can be applicable to any other environment in which the human user's sensory input is to be used to influence actions within the environment. Furthermore, the systems and methods disclosed can use neural, physiological, or behavioral signatures to inform deep reinforcement learning based AI systems to enhance user comfort and trust in automation.
摘要:
Human visual perception is able to recognize a wide range of targets but has limited throughput. Machine vision can process images at a high speed but suffers from inadequate recognition accuracy of general target classes. Systems and methods are provided that combine the strengths of both systems and improve upon existing multimedia processing systems and methods to provide enhanced multimedia labeling, categorization, searching, and navigation.
摘要:
Human visual perception is able to recognize a wide range of targets but has limited throughput. Machine vision can process images at a high speed but suffers from inadequate recognition accuracy of general target classes. Systems and methods are provided that combine the strengths of both systems and improve upon existing multimedia processing systems and methods to provide enhanced multimedia labeling, categorization, searching, and navigation.