摘要:
Methods and systems for evaluating a subject's response to a task related to a stimulus include a brain activity sensor, such as an EEG sensor, for measuring neural data generated by the subject in response to the visual stimulus. One or more neural discriminators can be calculated based on the neural data. In order to generate one or more neural discriminators, two or more task conditions can be selected for discrimination. The subject's performance can be evaluated based on the one or more neural discriminators. Feedback can be provided to the subject to assist in achieving better performance.
摘要:
The present subject matter relates to techniques for systems and methods for determining alpha phase in brain of subjects undergoing depressive disorder. The disclosed system for a closed-loop operation in simultaneous functional magnetic resonance imaging (fMRI)-electroencephalogram (EEG)-transcranial magnetic stimulation (TMS), can include a processor that be configured to receive and process a functional magnetic resonance imaging (fMRI) data and/or an extracranial electroencephalogram (EEG) data and/or transcranial magnetic stimulation (TMS) pulse simultaneously.
摘要:
The present subject matter relates to techniques for hierarchical deep transcoding. The disclosed system can include a processor that can be configured to receive a functional magnetic resonance imaging (fMRI) data and/or an extracranial electroencephalogram (EEG) data and reconstruct a latent source space from the fMRI data and/or the EEG data by decoding the EEG data and/or the fMRI data to a latent source space. The fMRI data and the EEG data can be simultaneously acquired.
摘要:
The present subject matter relates to techniques for hierarchical deep transcoding. The disclosed system can include a processor that can be configured to receive a functional magnetic resonance imaging (fMRI) data and/or an extracranial electroencephalogram (EEG) data and reconstruct a latent source space from the fMRI data and/or the EEG data by decoding the EEG data and/or the fMRI data to a latent source space. The fMRI data and the EEG data can be simultaneously acquired.
摘要:
The present disclosure relates to systems and methods for providing a hybrid brain-computer-interface (hBCI) that can detect an individual's reinforcement signals (e.g., level of interest, arousal, emotional reactivity, cognitive fatigue, cognitive state, or the like) in and/or response to objects, events, and/or actions in an environment by generating reinforcement signals for improving an AI agent controlling the environment, such as an autonomous vehicle. Although the disclosed subject matter is discussed within the context of an autonomous vehicle virtual reality game in the exemplary embodiments of the present disclosure, the disclosed system can be applicable to any other environment in which the human user's sensory input is to be used to influence actions within the environment. Furthermore, the systems and methods disclosed can use neural, physiological, or behavioral signatures to inform deep reinforcement learning based AI systems to enhance user comfort and trust in automation.
摘要:
The present disclosure relates to systems and methods for providing a hybrid brain-computer-interface (hBCI) that can detect an individual's reinforcement signals (e.g., level of interest, arousal, emotional reactivity, cognitive fatigue, cognitive state, or the like) in and/or response to objects, events, and/or actions in an environment by generating reinforcement signals for improving an AI agent controlling the environment, such as an autonomous vehicle. Although the disclosed subject matter is discussed within the context of an autonomous vehicle virtual reality game in the exemplary embodiments of the present disclosure, the disclosed system can be applicable to any other environment in which the human user's sensory input is to be used to influence actions within the environment. Furthermore, the systems and methods disclosed can use neural, physiological, or behavioral signatures to inform deep reinforcement learning based AI systems to enhance user comfort and trust in automation.
摘要:
Methods and systems for evaluating a subject's response to a task related to a stimulus include a brain activity sensor, such as an EEG sensor, for measuring neural data generated by the subject in response to the visual stimulus. One or more neural discriminators can be calculated based on the neural data. In order to generate one or more neural discriminators, two or more task conditions can be selected for discrimination. The subject's performance can be evaluated based on the one or more neural discriminators. Feedback can be provided to the subject to assist in achieving better performance.
摘要:
Human visual perception is able to recognize a wide range of targets but has limited throughput. Machine vision can process images at a high speed but suffers from inadequate recognition accuracy of general target classes. Systems and methods are provided that combine the strengths of both systems and improve upon existing multimedia processing systems and methods to provide enhanced multimedia labeling, categorization, searching, and navigation.
摘要:
Methods and systems for evaluating a subject's response to a task related to a stimulus include a brain activity sensor, such as an EEG sensor, for measuring neural data generated by the subject in response to the visual stimulus. One or more neural discriminators can be calculated based on the neural data. In order to generate one or more neural discriminators, two or more task conditions can be selected for discrimination. The subject's performance can be evaluated based on the one or more neural discriminators. Feedback can be provided to the subject to assist in achieving better performance.
摘要:
Human visual perception is able to recognize a wide range of targets but has limited throughput. Machine vision can process images at a high speed but suffers from inadequate recognition accuracy of general target classes. Systems and methods are provided that combine the strengths of both systems and improve upon existing multimedia processing systems and methods to provide enhanced multimedia labeling, categorization, searching, and navigation.