TORQUE SENSOR
    1.
    发明申请
    TORQUE SENSOR 审中-公开

    公开(公告)号:US20180209860A1

    公开(公告)日:2018-07-26

    申请号:US15745979

    申请日:2016-07-21

    IPC分类号: G01L3/10

    摘要: An inner support member, a detection deformable body, and a ring-shaped outer support member are disposed sequentially from the inside to the outside around a Z axis as a central axis. Inner surfaces in the vicinity of inner support points of the detection deformable body connect to outer surfaces of the inner support member via inner connecting members, and outer surfaces in the vicinity of outer support points of the detection deformable body connect to inner surfaces of the outer support member via outer connecting members. When a torque acts in the clockwise direction on the outer support member (130) while the inner support member is fixed, detection parts are displaced outwardly, and detection parts are displaced inwardly. These displacements are detected electrically as changes in capacitance values of four capacitor elements including opposing electrodes.

    Torque sensor
    2.
    发明授权

    公开(公告)号:US10209151B2

    公开(公告)日:2019-02-19

    申请号:US15745979

    申请日:2016-07-21

    摘要: An inner support member, a detection deformable body, and a ring-shaped outer support member are disposed sequentially from the inside to the outside around a Z axis as a central axis. Inner surfaces in the vicinity of inner support points of the detection deformable body connect to outer surfaces of the inner support member via inner connecting members, and outer surfaces in the vicinity of outer support points of the detection deformable body connect to inner surfaces of the outer support member via outer connecting members. When a torque acts in the clockwise direction on the outer support member (130) while the inner support member is fixed, detection parts are displaced outwardly, and detection parts are displaced inwardly. These displacements are detected electrically as changes in capacitance values of four capacitor elements including opposing electrodes.

    Movable reflection device and reflection surface drive system utilizing same

    公开(公告)号:US10473917B2

    公开(公告)日:2019-11-12

    申请号:US15579435

    申请日:2016-06-07

    IPC分类号: G02B26/08 B81B3/00 G02B26/10

    摘要: A mirror with a reflective layer formed thereon is supported within a frame-shaped support by two U-shaped arms. A plate-like arm connects fixation points (Q1, Q2), and a plate-like arm connects fixation points (Q3, Q4). A pair of piezoelectric elements (E11, E12) disposed along a longitudinal axis (L1) on an upper surface of an outside bridge of the arm, and a single piezoelectric element (E20) disposed along the longitudinal axis (L2) on the upper surface of an inside bridge. Similarly, a pair of piezoelectric elements (E31, E32) disposed on an upper surface of an outside bridge of the arm, and a single piezoelectric element (E40) disposed on the upper surface of an inside bridge. When a positive drive signal is applied to the piezoelectric elements (E11, E20, E31, E40) and a negative drive signal is applied to the piezoelectric elements (E12, E32), the mirror is displaced efficiently.

    Movable reflective element and two-dimensional scanning device

    公开(公告)号:US10481391B2

    公开(公告)日:2019-11-19

    申请号:US15579547

    申请日:2016-06-06

    摘要: Actuators (140), which are a pair of members, are disposed one on either side of a movable frame (120) in the X-axis direction, and oscillate the movable frame (120) about the X axis in relation to a fixed frame (110) by deformation caused by stretching and contracting of piezoelectric elements. Actuators (150), which are a pair of members, are disposed one on either side of a mirror (130) in the Y-axis direction, and oscillate the mirror (130) about the Y axis in relation to the movable frame (120) by deformation caused by stretching and contracting of the piezoelectric elements. The length of each actuator (140) extending in the Y-axis direction is longer than a distance between an inner side of the fixed frame (110) to which the actuator (140) is connected and the middle point of an outer side of the movable frame (120) in the Y-axis direction.

    POWER GENERATING ELEMENT
    5.
    发明申请

    公开(公告)号:US20190199243A1

    公开(公告)日:2019-06-27

    申请号:US16210479

    申请日:2018-12-05

    摘要: The power generation efficiency is to be enhanced by converting vibration energy including various direction components into electric energy without waste. A cantilever structure is adopted, in which a first plate-like bridge portion (120) and a second plate-like bridge portion (130) extend in a shape of a letter U from a fixing-portion (110) fixed to the device housing (200) and a weight body (150) is connected to the end. On the upper surface of the cantilever structure, a common lower layer electrode (E00), a layered piezoelectric element (300) and discrete upper layer electrodes (Ex1 to Ez4) are formed. The upper layer electrodes (Ez1 to Ez4) disposed on a center line (Lx, Ly) of each plate-like bridge portion take out charge generated in the piezoelectric element (300) due to deflection caused by the Z-axis direction vibration of the weight body (150). The upper layer electrodes (Ex1 to Ex4, Ey1 to Ey4) disposed on both sides of the center line (Lx, Ly) of the plate-like bridge portion take out charge generated in the piezoelectric element (300) due to deflection caused by the X-axis or Y-axis direction vibration of the weight body (150).

    Force sensor that detects at least one of a force in each axial direction and a moment around each axis in an XYZ three-dimensional coordinate system

    公开(公告)号:US11085836B2

    公开(公告)日:2021-08-10

    申请号:US15761415

    申请日:2017-03-06

    IPC分类号: G01L1/14 G01L25/00

    摘要: A force sensor according to the present invention includes: an annular deformable body arranged to surround an origin O when viewed in the Z-axis direction and configured to generate elastic deformation by application of one of a force and a moment; and a detection circuit that outputs an electric signal indicating one of the applied force and the moment on the basis of the elastic deformation generated in the deformable body. The deformable body includes: two fixed portions fixed with respect to the XYZ three-dimensional coordinate system; two force receiving portions positioned alternately with the fixed portions in a circumferential direction of the deformable body and configured to receive application of one of the force and the moment; and four deformable portions positioned between the fixed portion and the force receiving portion adjacent to each other in the circumferential direction of the deformable body, and each of the deformable portions includes a curved portion protruding in the Z-axis direction, and the detection circuit outputs the electric signal on the basis of elastic deformation generated in the curved portion.

    Power generating element
    7.
    发明授权

    公开(公告)号:US10177689B2

    公开(公告)日:2019-01-08

    申请号:US14914854

    申请日:2014-05-15

    摘要: The power generation efficiency is to be enhanced by converting vibration energy including various direction components into electric energy without waste. A cantilever structure is adopted, in which a first plate-like bridge portion (120) and a second plate-like bridge portion (130) extend in a shape of a letter U from a fixing-portion (110) fixed to the device housing (200) and a weight body (150) is connected to the end. On the upper surface of the cantilever structure, a common lower layer electrode (E00), a layered piezoelectric element (300) and discrete upper layer electrodes (Ex1 to Ez4) are formed. The upper layer electrodes (Ez1 to Ez4) disposed on a center line (Lx, Ly) of each plate-like bridge portion take out charge generated in the piezoelectric element (300) due to deflection caused by the Z-axis direction vibration of the weight body (150). The upper layer electrodes (Ex1 to Ex4, Ey1 to Ey4) disposed on both sides of the center line (Lx, Ly) of the plate-like bridge portion take out charge generated in the piezoelectric element (300) due to deflection caused by the X-axis or Y-axis direction vibration of the weight body (150).

    Power generating element
    8.
    发明授权

    公开(公告)号:US11088637B2

    公开(公告)日:2021-08-10

    申请号:US16210479

    申请日:2018-12-05

    摘要: The power generation efficiency is to be enhanced by converting vibration energy including various direction components into electric energy without waste. A cantilever structure is adopted, in which a first plate-like bridge portion (120) and a second plate-like bridge portion (130) extend in a shape of a letter U from a fixing-portion (110) fixed to the device housing (200) and a weight body (150) is connected to the end. On the upper surface of the cantilever structure, a common lower layer electrode (E00), a layered piezoelectric element (300) and discrete upper layer electrodes (Ex1 to Ez4) are formed. The upper layer electrodes (Ez1 to Ez4) disposed on a center line (Lx, Ly) of each plate-like bridge portion take out charge generated in the piezoelectric element (300) due to deflection caused by the Z-axis direction vibration of the weight body (150). The upper layer electrodes (Ex1 to Ex4, Ey1 to Ey4) disposed on both sides of the center line (Lx, Ly) of the plate-like bridge portion take out charge generated in the piezoelectric element (300) due to deflection caused by the X-axis or Y-axis direction vibration of the weight body (150).

    MOVABLE REFLECTION DEVICE AND REFLECTION SURFACE DRIVE SYSTEM UTILIZING SAME

    公开(公告)号:US20180172982A1

    公开(公告)日:2018-06-21

    申请号:US15579435

    申请日:2016-06-07

    IPC分类号: G02B26/08 G02B26/10 B81B3/00

    摘要: A mirror with a reflective layer formed thereon is supported within a frame-shaped support by two U-shaped arms. A plate-like arm connects fixation points (Q1, Q2), and a plate-like arm connects fixation points (Q3, Q4). A pair of piezoelectric elements (E11, E12) disposed along a longitudinal axis (L1) on an upper surface of an outside bridge of the arm, and a single piezoelectric element (E20) disposed along the longitudinal axis (L2) on the upper surface of an inside bridge. Similarly, a pair of piezoelectric elements (E31, E32) disposed on an upper surface of an outside bridge of the arm, and a single piezoelectric element (E40) disposed on the upper surface of an inside bridge. When a positive drive signal is applied to the piezoelectric elements (E11, E20, E31, E40) and a negative drive signal is applied to the piezoelectric elements (E12, E32), the mirror is displaced efficiently.