摘要:
Embodiments of the present invention help to improve the capacity and the performance of a disk drive device. According to one embodiment, a data track pitch is set to each recording surface. The recording surfaces are divided into bands. A hard disk drive (HDD) sequentially moves a head to an adjacent data track in a band and performs a head switch at the band end in its data accessing. On a recording surface, the number of data tracks in each band is variable; and each band is constituted by different number of data tracks as necessary. The number of data tracks in each band is set so that the radial position of the band end comes close to the radial position of the corresponding band end on another recording surface. Accordingly, even if the recording surfaces have different variation rates of the data track pitch in the radial direction, increase in process time due to head switches can be suppressed.
摘要:
Embodiments of the present invention help to improve the capacity and the performance of a disk drive device. According to one embodiment, a data track pitch is set to each recording surface. The recording surfaces are divided into bands. A hard disk drive (HDD) sequentially moves a head to an adjacent data track in a band and performs a head switch at the band end in its data accessing. On a recording surface, the number of data tracks in each band is variable; and each band is constituted by different number of data tracks as necessary. The number of data tracks in each band is set so that the radial position of the band end comes close to the radial position of the corresponding band end on another recording surface. Accordingly, even if the recording surfaces have different variation rates of the data track pitch in the radial direction, increase in process time due to head switches can be suppressed.
摘要:
Embodiments of the present invention help to improve test processes for hard disk drives (HDDs) and increase the manufacturing efficiency of HDDs. According to one embodiment, a test process performs a test on an HDD with respect to a plurality of items and stores one or a plurality of test results. Moreover, it determines the optimum specification category to which the HDD is to belong based on the stored test results. One factor of the specifications—storage capacity—has been determined before the test process or is determined during the test process. The test process classifies HDDs with the same storage capacity into different specification categories, and this classification may be performed in a single test process. This achieves efficient manufacture of HDDs with different specifications corresponding to the diversified usage of HDDs.
摘要:
Embodiments of the invention allow a heater to reduce the clearance between a head element section and the magnetic section while reducing the risk of collision between the head element section and the magnetic disk during load/unload. In one embodiment, an HDD judges whether a heater is ON or OFF after the load process is started. If the heater is found set to ON, the HDD sets the heater to OFF. With the heater kept OFF, the HDD starts the actuator pivoting. If the heater is found set to OFF, the HDD moves the actuator from the parking position to the magnetic disk with the heater kept OFF. Upon completion of the load process, the HDD goes to the subsequent process. Since the heater is OFF during load, the risk of collision between the head element section and the magnetic disk is reduced.
摘要:
Embodiments of the invention prevent data loss due to very frequent writing onto adjacent data tracks. In one embodiment, an alternate zone made up of multiple adjacent data tracks is formed by setting data tracks whose usage is to be prohibited for every other data track. The data updated very frequently and data not updated too frequently are recorded in the alternate zone. Data tracks for recording the data updated very frequently, and data tracks for recording data not updated too frequently, each have one cylinder of spacing. Data loss due to leakage fluxes can thus be prevented.
摘要:
Embodiments of the present invention help to increase the capacity and the reliability of a disk drive device to improve the manufacturing yield thereof. An embodiment of the present invention sets a data track pitch for each head slider (recording surface) in accordance with head characteristics. This method for specifying the data track pitch is based on the distance between erase band ends (EBEs) of the both adjacent data tracks. The erase band of a data track is a band defined as the area where the already written data are erased in writing the data track. The distance between the erase band ends of the both adjacent data tracks corresponds to the width SW of the area which is not erased by the adjacent data tracks. Specifying the data track pitch based on this leads to increase in the data capacity of each recording surface and secure prevention of occurrence of a squeeze error.
摘要:
Embodiments of the invention reduce a possibility that a head will collide with a medium when the clearance between the head and the medium is adjusted by using a medium, and sufficiently reduce the clearance even at an initial stage of accessing a data area. In one embodiment, a hard disk drive (HDD) keeps a heater in an OFF state for a period of time from the start of seek operation until the specified timing after a following mode starts. This prevents a head element from colliding with a magnetic disk, and also prevents flying properties from changing due to the deformation of the ABS. In the above specified timing, the heater is switched from OFF to ON. Specifically, for example, on completion of seek operation, in the timing in which a head arrives at a target track, or in the timing in which an HDC/MPU enters the following mode, the heater is turned ON.
摘要:
A disk drive and a disk drive control method is described which reduces the number of one track seeks a drive performs. The one track seeks can operate the actuator bearing in a non-linear mode or can increase in the friction of the actuator bearing which leads to servo positioning inaccuracies. In the disk drive the logical block address (LBA) assignments are made so that when sequential addresses are allocated to two different tracks, the tracks are physically non-adjacent. Thus, when a sequential LBAs are read across a track boundary, the actuator is moved farther than would be required if the LBAs were assigned the adjacent tracks.
摘要:
A data storage system, a storage medium and a method of controlling a data storage system are described, which allow defects on a storage medium to be handled with a memory region of a reduced size. In one embodiment defective sectors are determined on a magnetic disk and recorded in a defect map as a starting address and a number (length) of consecutive defective sectors to more efficiently record defective sector bursts than in the prior art. Optionally a mixed format defect map may record defective sector bursts as above and single sector defects as an address without a number of consecutive defective sectors.
摘要:
Embodiments of the present invention help to achieve a read error recovery, and suppress decreases in the capacity of the disk drive device and degradation in performance. In one embodiment, a hard disk drive (HDD) performs following control without use of repeatable run-out (RRO) compensation information on a magnetic disk in a normal reading process. When an error occurs in a normal reading process, the HDD moves a read element to a position different from a target position of the normal reading process. At the position where the read element has been moved, the read element reads out the RRO compensation information. In a recovery procedure for the reading process where the error has occurred, the HDD performs following control with compensation by the servo compensation information read out by the read element.