摘要:
This invention is intended to provide a wind power generator system or method for controlling a wind power generator system, designed to implement switching-initiated smooth energy changeover without leading to a complex system configuration. The method of controlling a wind power generator system according to an aspect of the invention, wherein the generator system includes a wind turbine that uses wind to generate electric power and a control device that controls the wind turbine, is a control method designed so that when the wind turbine is generating power, the turbine drives the control device by use of the turbine-generated power, irrespective of an electric power system state.
摘要:
According to the present invention, a wind turbine generator system is provided which can not only remove the influence of salt damage in case the system is established off-shore, but even if the facility becomes larger, which can also cool equipment and the generator provided in the tower and can reduce the possibility of decreasing power generation efficiency. The wind turbine generator system of the present invention comprising a rotor having a hub and blades; a generator connected with the rotor by way of a main shaft connected with the hub; a nacelle which contains at least the generator and supports the rotor pivotally by way of the main shaft; a tower on a top of which the nacelle is supported, and opposite to the top the tower is fixed to a base, wherein a heat exchanger is provided at the tower close to the base and cooling medium passes through the heat exchanger by way of a pipe arrangement, and thereby the heat of the cooling medium and the heat of air inside the tower are exchanged and the air inside the tower is cooled.
摘要:
According to the present invention, a wind turbine generator system is provided which can not only remove the influence of salt damage in case the system is established off-shore, but even if the facility becomes larger, which can also cool equipment and the generator provided in the tower and can reduce the possibility of decreasing power generation efficiency. The wind turbine generator system of the present invention comprising a rotor having a hub and blades; a generator connected with the rotor by way of a main shaft connected with the hub; a nacelle which contains at least the generator and supports the rotor pivotally by way of the main shaft; a tower on a top of which the nacelle is supported, and opposite to the top the tower is fixed to a base, wherein a heat exchanger is provided at the tower close to the base and cooling medium passes through the heat exchanger by way of a pipe arrangement, and thereby the heat of the cooling medium and the heat of air inside the tower are exchanged and the air inside the tower is cooled.
摘要:
This invention is intended to provide a wind power generator system or method for controlling a wind power generator system, designed to implement switching-initiated smooth energy changeover without leading to a complex system configuration.The method of controlling a wind power generator system according to an aspect of the invention, wherein the generator system includes a wind turbine that uses wind to generate electric power and a control device that controls the wind turbine, is a control method designed so that when the wind turbine is generating power, the turbine drives the control device by use of the turbine-generated power, irrespective of an electric power system state.
摘要:
A wind turbine able to generate power irrespective of a presence of and a state of a power grid is disclosed. Specifically, a wind power generation system is provided with a wind turbine, the wind turbine including a blade that rotates in response to the wind, a generator that rotates with rotation of the blade to generate power, and an auxiliary machine that controls a pitch angle of the blade. The auxiliary machine is driven by the generated power of a downwind type wind turbine to which a permanent magnet type generator is mounted and which generates power in a state in which a blade of the downwind type wind turbine rotating in response to the wind faces downwind.
摘要:
A wind turbine able to generate power irrespective of a presence of and a state of a power grid is disclosed. Specifically, a wind power generation system is provided with a wind turbine, the wind turbine including a blade that rotates in response to the wind, a generator that rotates with rotation of the blade to generate power, and an auxiliary machine that controls a pitch angle of the blade. The auxiliary machine is driven by the generated power of a downwind type wind turbine to which a permanent magnet type generator is mounted and which generates power in a state in which a blade of the downwind type wind turbine rotating in response to the wind faces downwind.
摘要:
A downwind type wind turbine having a transformer stored in a support post or in a nacelle includes the nacelle which supports a rotor and stores therein a generator, a support post which supports the nacelle and a main transformer disposed between the generator and an electric power system and the main transformer is stored in the nacelle or in the support post.
摘要:
A downwind type wind turbine having a transformer stored in a support post or in a nacelle includes the nacelle which supports a rotor and stores therein a generator, a support post which supports the nacelle and a main transformer disposed between the generator and an electric power system and the main transformer is stored in the nacelle or in the support post.
摘要:
A method for strengthening a pressure resistant property of a hollowed structure made of a metallic material and a pressure resistant hollowed structure made by such method. The method includes providing a temperature differential in a thickness direction between an outer side and an inner side of the metallic material with an arranged sufficient to generate a stress not exceeding a yielding stress of the metallic material. The outer side and inner side are pressurized so as to superimposed a stress generated by the pressurizing and the stress caused by the temperature differential reaching the yielding stress of the metallic material. The pressure is released subsequent to the superimposed stress reaching a level of the yielding stress of the metallic material. The compressive residual stress has a larger absolute value than a tensile stress caused in the inner side of the hollowed structure by the internal pressure, with the tensile residual stress in an outer side of the hollowed structure having a value of less than the tensile yielding stress of the metallic material even though the tensile stress is superimposed in the outer side of the hollowed structure by the internal pressure.