摘要:
A radar device includes an antenna, from which a detection signal is transmitted while the antenna being rotated and by which a reflective wave of the transmitted detection signal is received to detect echo data, wherein image data is generated based on the detected echo data, a continuity detecting module for detecting a planer continuity of the currently detected echo data with respect to a pixel concerned in the image data, a behavior data generating module for generating behavior data indicative of a behavior of the echo data for a predetermined number of scans of the past in the pixel concerned based on behavior determination data, and an echo kind determining module for determining a kind of the echo data of the pixel concerned based on the planer continuity and the behavior data.
摘要:
A radar device includes an antenna, from which a detection signal is transmitted while the antenna being rotated and by which a reflective wave of the transmitted detection signal is received to detect echo data, wherein image data is generated based on the detected echo data, a continuity detecting module for detecting a planar continuity of the currently detected echo data with respect to a pixel concerned in the image data, a behavior data generating module for generating behavior data indicative of a behavior of the echo data for a predetermined number of scans of the past in the pixel concerned based on behavior determination data, and an echo kind determining module for determining a kind of the echo data of the pixel concerned based on the planar continuity and the behavior data.
摘要:
An onboard equipment network system comprises a radar core device, a GPS core device, an echo sounder core device and a sonar core device and display devices which are connected to a network through a hub. Each core device includes a detecting section or a positioning section, as well as a control section, a power supply section and a data transmitter for transmitting detecting signals or positioning signals, while each display device includes a command section for transmitting command data to the individual core devices for setting their operating conditions and a display section for displaying image data received from the individual core devices. The command data is transmitted using Transmission Control Protocol (TCP) while the image data is transmitted using User Datagram Protocol (UDP).
摘要:
An onboard equipment network system comprises a radar core device, a GPS core device, an echo sounder core device and a sonar core device and display devices which are connected to a network through a hub. Each core device includes a detecting section or a positioning section, as well as a control section, a power supply section and a data transmitter for transmitting detecting signals or positioning signals, while each display device includes a command section for transmitting command data to the individual core devices for setting their operating conditions and a display section for displaying image data received from the individual core devices. The command data is transmitted using Transmission Control Protocol (TCP) while the image data is transmitted using User Datagram Protocol (UDP).
摘要:
An onboard equipment network system comprises a radar core device, a GPS core device, an echo sounder core device and a sonar core device and display devices which are connected to a network through a hub. Each core device includes a detecting section or a positioning section, as well as a control section, a power supply section and a data transmitter for transmitting detecting signals or positioning signals, while each display device includes a command section for transmitting command data to the individual core devices for setting their operating conditions and a display section for displaying image data received from the individual core devices. The command data is transmitted using Transmission Control Protocol (TCP) while the image data is transmitted using User Datagram Protocol (UDP).
摘要:
A radar device is realized in which an object and extraneous waves such as radar interference or white noise are distinguished and displayed in different display forms. Subtraction Flag Generator 6 determines the time-wise continuity and the planar consecutiveness of target echo data. The time-wise continuity is an amount that indicates the extent to which significant echo data continued to be present at the same position, and is obtained from the echo data of a past predetermined number of sweep rotations. Planar consecutiveness indicates the extent to which significant echo data is present around target echo data, and is obtained by acquiring in a planar fashion echo data for each of predetermined amounts in a distance direction and a heading direction, centered around the target echo data. When Subtraction Flag Generator 6 detects that there is either of time-wise continuity and planar consecutiveness, Subtraction Flag Generator 6 attaches a subtraction flag “1”. Subtraction Processor 9 sets a low attenuation amount for the data level when the subtraction flag is “1”, and sets a fast attenuation amount when the subtraction flag is “0”.
摘要:
A radar device is realized in which an object and extraneous waves such as radar interference or white noise are distinguished and displayed in different display forms. Subtraction Flag Generator 6 determines the time-wise continuity and the planar consecutiveness of target echo data. The time-wise continuity is an amount that indicates the extent to which significant echo data continued to be present at the same position, and is obtained from the echo data of a past predetermined number of sweep rotations. Planar consecutiveness indicates the extent to which significant echo data is present around target echo data, and is obtained by acquiring in a planar fashion echo data for each of predetermined amounts in a distance direction and a heading direction, centered around the target echo data. When Subtraction Flag Generator 6 detects that there is either of time-wise continuity and planar consecutiveness, Subtraction Flag Generator 6 attaches a subtraction flag “1”. Subtraction Processor 9 sets a low attenuation amount for the data level when the subtraction flag is “1”, and sets a fast attenuation amount when the subtraction flag is “0”.
摘要:
A radar device is disclosed. The radar device includes a radar antenna, from which detection signals are transmitted while the radar antenna being rotated, the radar device generating a radar image from reflection waves of the transmitted detection signals, a reception module for receiving the reflection waves of the detection signals, an inclination calculating module for calculating an inclination of level of the received signals that continue in a predetermined direction, the inclination being a rate of change in the received signal level per predetermined range in the predetermined direction, and a rain/snow reflection determining module for determining whether the received signals are reflection signals from at least one of rain and snow by using the inclination calculated by the inclination calculating module.
摘要:
This disclosure provides an image processing device, which includes a relative trail image memory for storing a relative trail data group indicating relative changes in position of a target object detected by echo signals obtained corresponding to detection signals transmitted while changing a transmitting azimuth direction, with respect to a transmitting position from which the detection signals are transmitted, and an approaching target object determination processing module for determining whether the target object detected with the detection signals is an approaching target object that approaches the transmitting position based on relative trail data existing on the same sweep line among the relative trail data group stored in the relative trail image memory.
摘要:
A radar device is disclosed. The radar device includes a radar antenna, from which detection signals are transmitted while the radar antenna being rotated, the radar device generating a radar image from reflection waves of the transmitted detection signals, a reception module for receiving the reflection waves of the detection signals, an inclination calculating module for calculating an inclination of level of the received signals that continue in a predetermined direction, the inclination being a rate of change in the received signal level per predetermined range in the predetermined direction, and a rain/snow reflection determining module for determining whether the received signals are reflection signals from at least one of rain and snow by using the inclination calculated by the inclination calculating module.