Abstract:
Method and systems for improving utilization of high-speed time division multiplexed communications links at a signal transfer point are disclosed. A multi-port link interface module terminates two or more high-speed TDM links and generates internal data. Data received on one high-speed communications link is combined with the internal data used to fill outbound timeslots in an outgoing high-speed link. The data may include signaling data, bearer data, or signaling and bearer data.
Abstract:
Methods and systems for routing SS7 messages based on DPC-based routing rules and non-DPC-based routing rules are disclosed. For a message containing signaling system 7 (SS7) information, a message routing function at an SS7 signaling message routing node searches a list of message routing rules using a search key including a DPC parameter extracted from the signaling message. If a matching entry is not located in the first routing rule list, a default SS7 routing rule may be used to route the message. The default routing rule may include wildcard values for each of the network ID, network cluster, and cluster member components of the DPC address field. Multiple default routing rules may be defined using various SS7 discriminator parameters. In addition, new DPC-based routing rules can be created and added to the list of DPC-based routing rules based on lookups in the set of non-DPC-based routing rules.
Abstract:
Methods and systems for signaling connection control part (SCCP) loop detection and prevention are disclosed. A signal transfer point (STP) receives a message and performs global title translation (GTT) for the message. The STP compares the originating point code (OPC) in the signaling message with the post-GTT destination point code (DPC) in the message. If the incoming message OPC matches the post-GTT DPC, SCCP looping is detected and the message is discarded. If the incoming message OPC does not match the post-GTT DPC, the STP may correlate the incoming message OPC or the DPC to one or more additional point codes to identify the presence of SCCP looping.
Abstract:
Methods and systems for generating, distributing, and screening commercial content are disclosed. A commercial content generator (CCG) generates commercial content message and obtains from a push proxy agent address resolution server the network routing address of each push proxy agent that is required for distribution of the message to the target mobile subscriber audience. A push proxy agent receives a message containing commercial content and resolves a mobile subscriber identifier for each mobile subscriber who is to receive the commercial content information using subscriber information obtained from a subscriber location register, such as a visitor location register (VLR). The push proxy agent may also negotiate media format characteristics for each member of the target mobile subscriber audience and facilitate delivery of the commercial content to each member of the target mobile subscriber audience.
Abstract:
Methods and systems for identifying and redirecting messages of different SS7 protocol variations are disclosed. A screening function receives SS7 message and identifies candidates for redirection. An SS7 variation identifier/redirection function identifies the SS7 protocol variation of incoming SS7 messages identified as candidates for redirection. The redirection candidates are encapsulated in SCCP messages. The SCCP messages are then forwarded to an application. The SCCP messages preferably include indicators identifying the protocol variations of their payloads. Upon receiving the SCCP messages, the application decodes the payloads using the protocol variation indicator.
Abstract:
Methods and systems for associating a plurality of different routes with the same destination and for routing signaling messages to the destination based on originating information associated with non-adjacent signaling nodes are disclosed. A routing database in a signal transfer point includes multiple routes to the same destination. The routes are distinguishable from each other in the routing database using message origination information associated with signaling nodes that are not adjacent to the signal transfer point. When a signaling message is received, origination and destination information in the signaling message are used in combination to select among multiple routes to a destination having a network address corresponding to the destination information in the signaling message. The signaling message is then routed over the route selected using the originating information. The selected route may be a high-speed route used to provide a particular quality of service.
Abstract:
Methods and systems for message-origination-based global title translation include receiving a signaling message and determining whether global title translation is required. In response to determining that global title translation is required, a lookup is performed in the global title translation database. The lookup is based on the called party address and the originating point code in the signaling message. The destination point code from the global title translation is inserted in the signaling message. The signaling message is then routed to its intended destination based on the destination point code and optionally the originating point code in the signaling message.