摘要:
A method of controlling gate induced drain leakage current of a transistor is disclosed. The method includes forming a dielectric region (516) on a surface of a substrate having a first concentration of a first conductivity type (P-well). A gate region (500) having a length and a width is formed on the dielectric region. Source (512) and drain (504) regions having a second conductivity type (N+) are formed in the substrate on opposite sides of the gate region. A first impurity region (508) having the first conductivity type (P+) is formed adjacent the source. The first impurity region has a second concentration greater than the first concentration.
摘要:
A method of controlling gate induced drain leakage current of a transistor is disclosed. The method includes forming a dielectric region (516) on a surface of a substrate having a first concentration of a first conductivity type (P-well). A gate region (500) having a length and a width is formed on the dielectric region. Source (512) and drain (504) regions having a second conductivity type (N+) are formed in the substrate on opposite sides of the gate region. A first impurity region (508) having the first conductivity type (P+) is formed adjacent the source. The first impurity region has a second concentration greater than the first concentration.
摘要:
A method of fabricating an SRAM cell with reduced leakage is disclosed. The method comprises fabricating asymmetrical transistors in the SRAM cell. The transistors are asymmetrical in a manner that reduces the drain leakage current of the transistors. The fabrication of asymmetrical pass transistors comprises forming a dielectric region on a surface of a substrate having a first conductivity type. A gate region having a length and a width is formed on the dielectric region. Source and drain extension regions having a second conductivity type are formed in the substrate on opposite sides of the gate region. A first pocket impurity region having a first concentration and the first conductivity type is formed adjacent the source. A second pocket impurity region having a second concentration and the first conductivity type may be formed adjacent the drain. If formed, the second concentration is smaller than the first concentration, reducing the gate induced drain leakage current.
摘要:
A method of controlling gate induced drain leakage current of a transistor is disclosed. The method includes forming a dielectric region (516) on a surface of a substrate having a first concentration of a first conductivity type (P-well). A gate region (500) having a length and a width is formed on the dielectric region. Source (512) and drain (504) regions having a second conductivity type (N+) are formed in the substrate on opposite sides of the gate region. A first impurity region (508) having the first conductivity type (P+) is formed adjacent the source. The first impurity region has a second concentration greater than the first concentration.
摘要:
A method of controlling gate induced drain leakage current of a transistor is disclosed. The method includes forming a dielectric region (516) on a surface of a substrate having a first concentration of a first conductivity type (P-well). A gate region (500) having a length and a width is formed on the dielectric region. Source (512) and drain (504) regions having a second conductivity type (N+) are formed in the substrate on opposite sides of the gate region. A first impurity region (508) having the first conductivity type (P+) is formed adjacent the source. The first impurity region has a second concentration greater than the first concentration.
摘要:
A method of controlling gate induced drain leakage current of a transistor is disclosed. The method includes forming a dielectric region (516) on a surface of a substrate having a first concentration of a first conductivity type (P-well). A gate region (500) having a length and a width is formed on the dielectric region. Source (512) and drain (504) regions having a second conductivity type (N+) are formed in the substrate on opposite sides of the gate region. A first impurity region (508) having the first conductivity type (P+) is formed adjacent the source. The first impurity region has a second concentration greater than the first concentration.
摘要:
A method of fabricating an SRAM cell with reduced leakage is disclosed. The method comprises fabricating asymmetrical transistors in the SRAM cell. The transistors are asymmetrical in a manner that reduces the drain leakage current of the transistors. The fabrication of asymmetrical pass transistors comprises forming a dielectric region on a surface of a substrate having a first conductivity type. A gate region having a length and a width is formed on the dielectric region. Source and drain extension regions having a second conductivity type are formed in the substrate on opposite sides of the gate region. A first pocket impurity region having a first concentration and the first conductivity type is formed adjacent the source. A second pocket impurity region having a second concentration and the first conductivity type may be formed adjacent the drain. If formed, the second concentration is smaller than the first concentration, reducing the gate induced drain leakage current.
摘要:
According to one embodiment, a method for patterning a set of features for a semiconductor device includes providing a mask including a substrate and at least one pair of first and second main features disposed on a substrate. The method also includes positioning the mask over a layer of light-sensitive material, and exposing the mask to a light source. The mask also includes at least one sub-resolution feature connecting the first and second main features.
摘要:
A method of placing a cell in an array is disclosed. The method includes placing the cell a plurality of times (600, 602, 604) in a first array. The cell is also placed a plurality of times (606, 608, 610) in a second array. The second array is placed adjacent and offset from the first array by an offset distance (O2).
摘要:
Methods (600, 700) are disclosed for minimizing the effect of pocket shadowing in the fabrication of an angled pocket implant (32) extending underlying a gate region (21) of a transistor (10), particularly in SRAM devices (400). The pocket shadowing is minimized by initially forming a relatively thick resist layer (810) overlying the semiconductor device (800), then the resist layer thickness (810y) is reduced (trimmed) to a reduced thickness (860y) by using a subsequent post-development dry or wet resist-reduction etch process (630, 730). The etch process (630, 730) also increases corner rounding (860r), thereby reducing pocket shadowing of the angled implant from nearby features or the resist (228, 328, 860). The pocket shadow reduction may be accomplished by first forming (610, 710) the relatively thick resist layer (810) overlying the semiconductor device (400, 800). The resist layer (860) is then wet and/or dry etched (630, 730) to trim the resist thickness (860y) and to round the corners (860r) of the resist (442, 860). In combination, these changes reduce shadowing of angled implants from nearby structures and resist edges. The method may further comprise a first implant (720) (e.g., an LDD implant) before the resist etch trim (730), and a second angled pocket implant (740) after the etch trim (730) to permit individually optimizing the resist thickness and CD for each implant. Thus, only one lithography step is required, while cross diffusion of the LDD implant is mitigated. Transistors (443 and 446, 448, or 830 and 840) formed in this manner may yield improved performance when incorporated into SRAM (400, 800) since the probability that such transistors will be more closely matched is increased.