摘要:
Disclosed is a method for preparing an alkali metal salt of a hydroxy-substituted hydrocarbon which comprises the steps of (i) contacting in solvent media at least one hydroxy-substituted hydrocarbon with a base comprising an alkali metal cation; and (ii) devolatilizing the solvent media comprising alkali metal salt by adding or spraying the solvent media into a substantially water-immiscible organic solvent, said solvent being at a temperature greater than the boiling point of solvent media at the prevailing pressure. In one embodiment the solvent media comprises water, and optionally at least one water-soluble protic organic solvent.
摘要:
Disclosed herein is a method for purification of dianhydrides comprising a substantial amount (10000 ppm or more) of at least one metal salt. In one aspect the method is useful for the purification of dianhydrides prepared by the reaction of a halophthalic anhydride with a metal carbonate and may be optionally catalyzed by a phase transfer catalyst. The purification of the dianhydrides may be accomplished by hydrolyzing the dianhydride metal salt mixture directly to a tetraacid with an inorganic acid, followed by separating the impurities from an aqueous phase, and subsequently heating the tetraacid to effect ring closure to form a purified dianhydride having less than 50 parts per million metal halide and lower levels of other residual impurities. In one aspect the method is highly effective in removing phase transfer catalyst impurities such as hexalkylguanidinium halides initially present in the dianhydride undergoing purification.
摘要:
In an embodiment, a method is disclosed to increase the activity of an ionic liquid catalyst comprising emulsifying the ionic liquid catalyst with one or more liquid components. In an embodiment, a method is disclosed comprising introducing into a reaction zone a monomer feed and a reduced amount of ionic liquid catalyst and controlling an amount of shear present in the reaction zone to maintain a desired conversion reaction of the monomer. In an embodiment, a catalyzed reaction system is disclosed comprising a reactor configured to receive one or more liquid components and ionic liquid catalyst; a device coupled to the reactor for adding high shear to the liquid components and ionic liquid catalyst; and a controller coupled to the device for adding high shear and configured to control the amount of shear added to a catalyzed reaction zone to maintain a conversion reaction.