摘要:
An apparatus (100), control system (150) and methods are provided for directly measuring a pressure gradient, i.e. by real-time pressure measurements, with particular application for in situ measurement of transvalvular blood pressure gradients for the aortic valve and other heart valves, using minimally-invasive techniques. The apparatus takes the form of a multi-sensor assembly, e.g. enclosed within a micro-catheter or a steerable guidewire, and comprises a plurality of optical pressure sensors (10) is arranged along a length of the distal end portion (101), for measuring pressure simultaneously at each sensor location. For example, four MOMS optical pressure sensors (10), and optionally, a flow sensor (20), are incorporated into a distal end portion (101) having a diameter of 0.89 mm or less, and preferably 0.46 mm or less. Beneficially, all sensors are optically coupled, via respective optical fibers (11), to an optical coupler (112) at the proximal end of the multi-sensor apparatus, without requiring electrical connections.
摘要:
An apparatus (100), control system (150) and methods are provided for directly measuring a pressure gradient, i.e. by real-time pressure measurements, with particular application for in situ measurement of transvalvular blood pressure gradients for the aortic valve and other heart valves, using minimally-invasive techniques. The apparatus takes the form of a multi-sensor assembly, e.g. enclosed within a micro-catheter or a steerable guidewire, and comprises a plurality of optical pressure sensors (10) is arranged along a length of the distal end portion (101), for measuring pressure simultaneously at each sensor location. For example, four MOMS optical pressure sensors (10), and optionally, a flow sensor (20), are incorporated into a distal end portion (101) having a diameter of 0.89 mm or less, and preferably 0.46 mm or less. Beneficially, all sensors are optically coupled, via respective optical fibers (11), to an optical coupler (112) at the proximal end of the multi-sensor apparatus, without requiring electrical connections.
摘要:
Apparatus (100) is provided comprising an optical micro-sensor (10) for directly measuring a fluid temperature and flow by thermoconvection, which suitable for medical applications, e.g. using minimally-invasive cardiovascular techniques. A multi-sensor apparatus (100) may take the form of a micro-catheter or steerable guidewire, equipped with a plurality of miniaturized optical sensors (10) arranged along a length of the distal end (101), each coupled via optical fibers (11) to a proximal end (102) comprising an input/output connector (112) to the control system (110), without the need for electrical connections. This enables direct measurement of blood flow, temperature and/or blood pressure simultaneously at several locations within the blood vessels or the heart, including transvalvular measurements. Preferably, the distal end portion has a diameter of 0.89 mm (0.035″) or less, and more preferably 0.46 mm (0.018″) or less, so that there is negligible effect on valve movement, transvalvular pressure gradient and flow during measurement.