摘要:
A magnetic resonance imaging apparatus includes an acquisition unit that acquires first data in which a tissue of interest has higher signal intensity than a background and second data in which the tissue of interest has lower signal intensity than the background, with regard to images of the same region of the same subject, and a generation unit that generates, on the basis of the first data and the second data, third data in which the contrast of the tissue of interest to the background is higher than those in the first and second data.
摘要:
A magnetic resonance imaging diagnostic apparatus includes a generating unit which generates a slice gradient magnetic field, a phase-encode gradient magnetic field and a read-out gradient magnetic field that extend in a slice axis, a phase-encode axis and a read-out axis, respectively, a setting unit which sets a dephase amount for weighting a signal-level decrease resulting from flows in the arteries and veins present in a region of interest of a subject, with respect to at least one axis selected form the slice axis, phase-encode axis and read-out axes, and a control unit which controls the generating unit by using a pulse sequence for a gradient echo system, which includes a dephase gradient-magnetic-field pulse that corresponds to the dephase amount set by the setting unit for the at least one axis.
摘要:
A magnetic resonance imaging apparatus includes an acquisition unit which acquires first data in which a tissue of interest has higher signal intensity than a background and second data in which the tissue of interest has lower signal intensity than the background, with regard to images of the same region of the same subject, and a generation unit which generates, on the basis of the first data and the second data, third data in which the contrast of the tissue of interest to the background is higher than those in the first and second data.
摘要:
A magnetic resonance imaging diagnostic apparatus includes a generating unit which generates a slice gradient magnetic field, a phase-encode gradient magnetic field and a read-out gradient magnetic field that extend in a slice axis, a phase-encode axis and a read-out axis, respectively, a setting unit which sets a dephase amount for weighting a signal-level decrease resulting from flows in the arteries and veins present in a region of interest of a subject, with respect to at least one axis selected form the slice axis, phase-encode axis and read-out axes, and a control unit which controls the generating unit by using a pulse sequence for a gradient echo system, which includes a dephase gradient-magnetic-field pulse that corresponds to the dephase amount set by the setting unit for the at least one axis.
摘要:
A magnetic resonance imaging apparatus includes an acquisition unit which acquires first data in which a tissue of interest has higher signal intensity than a background and second data in which the tissue of interest has lower signal intensity than the background, with regard to images of the same region of the same subject, and a generation unit which generates, on the basis of the first data and the second data, third data in which the contrast of the tissue of interest to the background is higher than those in the first and second data.
摘要:
A magnetic resonance imaging apparatus includes an acquisition unit that acquires first data in which a tissue of interest has higher signal intensity than a background and second data in which the tissue of interest has lower signal intensity than the background, with regard to images of the same region of the same subject, and a generation unit that generates, on the basis of the first data and the second data, third data in which the contrast of the tissue of interest to the background is higher than those in the first and second data.
摘要:
A magnetic resonance imaging apparatus includes an acquisition unit which acquires first data in which a tissue of interest has higher signal intensity than a background and second data in which the tissue of interest has lower signal intensity than the background, with regard to images of the same region of the same subject, and a generation unit which generates, on the basis of the first data and the second data, third data in which the contrast of the tissue of interest to the background is higher than those in the first and second data.
摘要:
A diagnosis target image is input, and a template ROI which is set on an image to divide the area on the image into predetermined areas in anatomical terms, physiological terms, or other scientific terms is read out from a storage unit. A matching processing unit warps the template ROI in correspondence with each diagnosis target image on the basis of the feature information of the diagnosis target image extracted by a feature information extraction unit. This warping is executed until an index indicating the degree of matching between the template ROI and the diagnosis image exceeds a predetermined threshold. The warped template ROI is displayed on a display unit upon being superimposed on the diagnosis image.
摘要:
A data processing system configured to process acquired image data (e.g., as part of a diagnostic imaging apparatus) uses a signal-power estimating unit for estimating signal power by using reference data containing data different from processing-target data and a data processing unit for processing the processing-target data by using a WF (wiener filter) based on the signal power estimated by the signal-power estimating unit.
摘要:
An image processing apparatus includes a storage unit, a specifying unit, a calculation unit and a display unit. The storage unit stores diffusion weighted image data. The specifying unit specifies a calculation target region on the diffusion weighted image data. The calculation unit calculates at least one of a diffusion coefficient and a fractional anisotropy serving an index of diffusion anisotropy with regard to the calculation target region based on the diffusion weighted image data. The display unit displays at least one of the diffusion coefficient and the fractional anisotropy calculated by the calculation unit.