Abstract:
A matrix array display device has an array of pixels (10) on a substrate (50) which each have a display element (20), for example an electroluminescent display element, and associated control circuit including a storage capacitor (36) and a light sensing element (40) connected thereto for regulating charge stored on the capacitor and responsive, for example, to light emitted from the display element so as to regulate operation of the display element. The light sensing elements (40) comprise thin film semiconductor devices each having a strip of semiconductor material (52) with laterally-spaced, doped, contact regions (53, 54) and the associated storage capacitor (36) is formed by a conductive layer (58) extending substantially transversely of the strip over one contact region with intervening dielectric material. A predetermined relationship between the storage capacitor and photosensitive device characteristics is then ensured even though dimensional variations in component layers may occur due to manufacturing tolerances. Preferably, the photosensitive device comprises a gated device whose gate extends over the semiconductor strip region intermediate the contact regions. The gate dielectric and storage capacitor dielectric may comprise parts of a common layer (56). Alternatively, the conductive layer may be provided at the side of the strip opposite the gate and used also as a shield for ambient light.
Abstract:
A display device has an array of pixels (10) comprising light emitting display elements (20), for example EL elements, carried on a substrate (50) and associated light sensing elements (40) responsive to light emitted by the display elements. The light sensing elements each comprise a gated photosensitive thin film device such as a TFT structure or a lateral gated pin device having a semiconductor layer (52) with contact regions (53, 54) laterally spaced on the substrate and separated by a gate controlled region (55). A part of the associated display element (20) extends over the gate controlled region with an electrode (70) of the display element serving as the gate of the photosensitive device thereby ensuring good optical coupling between the display element and the photosensitive device and enabling the gate to be appropriately biased. Such an arrangement enables, for example, the provision of electro-optic feedback control in the pixel in comparatively simple manner.