-
1.
公开(公告)号:US11878426B2
公开(公告)日:2024-01-23
申请号:US17314039
申请日:2021-05-06
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Xingxing Ma , Chunyu Chen , Ligang Ge , Hongge Wang , Mingqiang Huang , Jiangchen Zhou , Yizhang Liu , Zheng Xie , Youjun Xiong
IPC: B25J9/16
CPC classification number: B25J9/1666 , B25J9/162 , B25J9/1653
Abstract: A biped robot gait control method as well as a robot and a computer readable storage medium are provided. During the movement, the system obtains a current supporting pose of a current supporting leg of the biped robot, and calculates a relative pose between the supporting legs based on the current supporting pose and a preset ideal supporting pose of a next step. The system further calculates modified gait parameters of the next step based on the relative pose between the two supporting legs and a joint distance between left and right ankle joints in an initial state of the biped robot when standing. Finally, the system controls the next supporting leg to move according to the modified gait parameters.
-
公开(公告)号:US12070856B2
公开(公告)日:2024-08-27
申请号:US17557076
申请日:2021-12-21
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Hongge Wang , Chunyu Chen , Yizhang Liu , Ligang Ge , Jie Bai , Xingxing Ma , Jiangchen Zhou
IPC: B25J9/16 , B62D57/02 , G05B19/41 , G05B19/4155
CPC classification number: B25J9/1605 , B25J9/1633 , B62D57/022 , G05B19/4155 , G05B2219/50391
Abstract: A robot balance control method as well as a robot using the same and a computer readable storage medium are provided. In the method, a brand new flywheel model different from the existing flywheel model is created. In this flywheel model, the foot of the support leg of the robot is equivalent to the massless link of the flywheel model, while rest parts of the robot are equivalent to the flywheel of the flywheel model. Compared with the various models in the prior art, this flywheel model is more in line with the actual situation of the robot during the monoped supporting period. By controlling the posture of the foot of the support leg based on this flywheel model, a better balance effect can be achieved, which avoids the overturning of the robot.
-
公开(公告)号:US20220193899A1
公开(公告)日:2022-06-23
申请号:US17488341
申请日:2021-09-29
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Hongge Wang , Chunyu Chen , Yizhang Liu , Ligang Ge , Jie Bai , Xingxing Ma , Jiangchen Zhou , Youjun Xiong
Abstract: A pose control method for a robot includes: estimating a first set of joint angular velocities of all joints of the robot according to a balance control algorithm; estimating a second set of joint angular velocities of all joints of the robot according to a momentum planning algorithm; estimating a third set of joint angular velocities of all joints of the robot according to a pose return-to-zero algorithm; and performing pose control on the robot according to the first set of joint angular velocities, the second set of joint angular velocities, and the third set of joint angular velocities.
-
4.
公开(公告)号:US12122468B2
公开(公告)日:2024-10-22
申请号:US17562985
申请日:2021-12-27
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Hongge Wang , Ligang Ge , Yizhang Liu , Jie Bai , Chunyu Chen , Xingxing Ma , Jiangchen Zhou , Youjun Xiong
IPC: B62D57/032 , B25J9/16
CPC classification number: B62D57/032 , B25J9/1664
Abstract: A stepping down trajectory planning method as well as a robot using the same and a computer readable storage medium are provided. The method includes: dividing a stepping down process of the robot into a plurality of planned stages; adjusting a start position of a swing leg of the robot according to an ankle-to-heel distance, where the ankle-to-heel distance is a horizontal distance between an ankle joint of the swing leg of the robot and a heel of the swing leg of the robot; determining an initial state and an end state of the swing leg in each of the planned stages according to the start position; and obtaining a planned trajectory of the swing leg by performing a curve fitting on the swing leg in each of the planned stages the initial state and the end state.
-
公开(公告)号:US20220206501A1
公开(公告)日:2022-06-30
申请号:US17462019
申请日:2021-08-31
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Xingxing Ma , Chunyu Chen , Yizhang Liu , Ligang Ge , Hongge Wang , Jie Bai , Jiangchen Zhou , Zheng Xie
Abstract: A dynamic footprint set generation method, a biped robot using die same, and a computer readable storage medium are provided. The method includes: obtaining preset footprint calculation parameters; calculating a landing point position based on the preset footprint calculation parameters; determining a landing point range based on a landing point position, and performing a collision detection on the landing point range; recording the corresponding landing point position in a footprint set in response to the detection result representing there being no collision; obtaining a preset adjustment amplitude to update a preset displacement angle after the recording is completed; and returning to the calculating the landing point position until the footprint set is generated. By continuously adjusting the preset displacement angle, each landing point position is calculated accordingly, and the valid landing point positions are recorded in the footprint set, which provides more feasible landing points for navigation planning.
-
公开(公告)号:US12005584B2
公开(公告)日:2024-06-11
申请号:US17488341
申请日:2021-09-29
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Hongge Wang , Chunyu Chen , Yizhang Liu , Ligang Ge , Jie Bai , Xingxing Ma , Jiangchen Zhou , Youjun Xiong
CPC classification number: B25J9/1653 , B25J9/1607 , B25J9/1664 , B25J13/088
Abstract: A pose control method for a robot includes: estimating a first set of joint angular velocities of all joints of the robot according to a balance control algorithm; estimating a second set of joint angular velocities of all joints of the robot according to a momentum planning algorithm; estimating a third set of joint angular velocities of all joints of the robot according to a pose return-to-zero algorithm; and performing pose control on the robot according to the first set of joint angular velocities, the second set of joint angular velocities, and the third set of joint angular velocities.
-
公开(公告)号:US11983012B2
公开(公告)日:2024-05-14
申请号:US17462019
申请日:2021-08-31
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Xingxing Ma , Chunyu Chen , Yizhang Liu , Ligang Ge , Hongge Wang , Jie Bai , Jiangchen Zhou , Zheng Xie
IPC: G05D1/00 , B62D57/032
CPC classification number: G05D1/0214 , G05D1/0231 , B62D57/032
Abstract: A dynamic footprint set generation method, a biped robot using die same, and a computer readable storage medium are provided. The method includes: obtaining preset footprint calculation parameters; calculating a landing point position based on the preset footprint calculation parameters; determining a landing point range based on a landing point position, and performing a collision detection on the landing point range; recording the corresponding landing point position in a footprint set in response to the detection result representing there being no collision; obtaining a preset adjustment amplitude to update a preset displacement angle after the recording is completed; and returning to the calculating the landing point position until the footprint set is generated. By continuously adjusting the preset displacement angle, each landing point position is calculated accordingly, and the valid landing point positions are recorded in the footprint set, which provides more feasible landing points for navigation planning.
-
公开(公告)号:US12103187B2
公开(公告)日:2024-10-01
申请号:US17516729
申请日:2021-11-02
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Xingxing Ma , Chunyu Chen , Ligang Ge , Yizhang Liu , Hongge Wang , Jie Bai , Zheng Xie , Jiangchen Zhou , Meihui Zhang , Shuo Zhang , Youjun Xiong
IPC: B25J9/16 , B62D57/032 , G05D1/43 , G05D1/622 , G05D1/644 , G05D109/12
CPC classification number: B25J9/1666 , B62D57/032 , G05D1/43 , G05D1/637 , G05D1/644 , G05D2109/12
Abstract: A path planning method and a biped robot using the same are provided. The method includes: generating a candidate node set for a next foot placement based on a biped robot's own parameters and joint information of a current node, adding valid candidate nodes in the candidate node set to a priority queue so as to select optimal nodes for realizing next node expansion. These optimal nodes are output to generate a foot placement sequence from an initial node to a target node, which can greatly reduce the search amount for path nodes when the robot's legs intersect and touch the ground, thereby improving the efficiency of path planning.
-
公开(公告)号:US20220203534A1
公开(公告)日:2022-06-30
申请号:US17516729
申请日:2021-11-02
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Xingxing Ma , Chunyn Chen , Ligang Ge , Yizhang Liu , Hongge Wang , Jie Bai , Zheng Xie , Jiangchen Zhou , Meihui Zhang , Shuo Zhang , Youjun Xiong
IPC: B25J9/16 , B62D57/032 , G05D1/02
Abstract: A path planning method and a biped robot using the same are provided. The method includes: generating a candidate node set for a next foot placement based on a biped robot's own parameters and joint information of a current node, adding valid candidate nodes in the candidate node set to a priority queue so as to select optimal nodes for realizing next node expansion. These optimal nodes are output to generate a foot placement sequence from an initial node to a target node, which can greatly reduce the search amount for path nodes when the robot's legs intersect and touch the ground, thereby improving the efficiency of path planning.
-
10.
公开(公告)号:US20220194500A1
公开(公告)日:2022-06-23
申请号:US17562985
申请日:2021-12-27
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Hongge Wang , Ligang Ge , Yizhang Liu , Jie Bai , Chunyu Chen , Xingxing Ma , Jiangchen Zhou , Youjun Xiong
IPC: B62D57/032 , B25J9/16
Abstract: A stepping down trajectory planning method as well as a robot using the same and a computer readable storage medium are provided. The method includes: dividing a stepping down process of the robot into a plurality of planned stages; adjusting a start position of a swing leg of the robot according to an ankle-to-heel distance, where the ankle-to-heel distance is a horizontal distance between an ankle joint of the swing leg of the robot and a heel of the swing leg of the robot; determining an initial state and an end state of the swing leg in each of the planned stages according to the start position; and obtaining a planned trajectory of the swing leg by performing a curve fitting on the swing leg in each of the planned stages the initial state and the end state.
-
-
-
-
-
-
-
-
-