Abstract:
A gas turbine engine component includes a body with a wall surrounding an interior cavity. The wall has opposed interior and exterior surfaces. The interior surface has a plurality of coolant inlets and the exterior surface has a coolant outlet defined therein. A coolant conduit extends between the coolant inlets and the coolant outlet and is configured and adapted to induce secondary flow vortices in coolant traversing the coolant conduit and in an adherent coolant film over a portion of the exterior surface of component body.
Abstract:
A gas turbine engine component includes a wall that provides an exterior surface and an interior flow path surface. The wall has a wall thickness. A protrusion is arranged on the wall that extends a height beyond the wall thickness and provides a portion of the interior flow path surface. A film cooling hole that has an inlet is provided on the protrusion and extends to an exit on the exterior surface.
Abstract:
A blade for a gas turbine engine includes an airfoil that extends a span from a root to a tip. The airfoil is provided by a first portion near the root and has a metallic alloy. A third portion near the tip has a refractory material. A second portion joins the first and third portions and has a functional graded material.
Abstract:
A gas turbine engine component includes a body with a wall surrounding an interior cavity. The wall has opposed interior and exterior surfaces. The interior surface has a plurality of coolant inlets and the exterior surface has a coolant outlet defined therein. A coolant conduit extends between the coolant inlets and the coolant outlet and is configured and adapted to induce secondary flow vortices in coolant traversing the coolant conduit and in an adherent coolant film over a portion of the exterior surface of component body.
Abstract:
A gas turbine engine component is described. The component includes a component wall having an internal surface that is adjacent a flow of coolant and an external surface that is adjacent a flow of gas. The component wall includes a cooling hole that has an inlet defined by the internal surface and an outlet defined by the external surface. The cooling holes also has a metering location having the smallest cross-section area of the cooling hole, an internal diffuser positioned between the inlet and the metering location, an accumulation diverter portion of the internal diffuser and an accumulator portion of the internal diffuser.
Abstract:
A gas turbine engine component includes a wall that provides an exterior surface and an interior flow path surface. A film cooling hole extends through the wall and is configured to fluidly connect the interior flow path surface to the exterior surface. The film cooling hole has a pocket that faces the interior flow path and extends substantially in a longitudinal direction. The film cooling hole has a portion downstream from the pocket and is arranged at an angle relative to the longitudinal direction and extends to the exterior surface.
Abstract:
A wall of a gas turbine engine is provided. The wall may comprise an external surface adjacent a gas path and an internal surface adjacent an internal flow path. A film hole may have an inlet at the internal surface and an outlet at the external surface. A flow accumulator adjacent the inlet may protrude from the internal surface. A method of making an engine component is also provided and comprises the step of forming a component wall comprising an accumulator on an internal surface and a film hole defined by the component wall. The film hole may include an opening adjacent the accumulator and defined by the internal surface.
Abstract:
A gas turbine engine component includes a wall that provides an exterior surface and an interior flow path surface. The wall has a wall thickness. A protrusion is arranged on the wall that extends a height beyond the wall thickness and provides a portion of the interior flow path surface. A film cooling hole that has an inlet is provided on the protrusion and extends to an exit on the exterior surface.
Abstract:
A gas turbine engine component includes a wall that provides an exterior surface and an interior flow path surface. A film cooling hole extends through the wall and is configured to fluidly connect the interior flow path surface to the exterior surface. The film cooling hole has a pocket that faces the interior flow path and extends substantially in a longitudinal direction. The film cooling hole has a portion downstream from the pocket and is arranged at an angle relative to the longitudinal direction and extends to the exterior surface.
Abstract:
A wall of a gas turbine engine is provided. The wall may comprise an external surface adjacent a gas path and an internal surface adjacent an internal flow path. A film hole may have an inlet at the internal surface and an outlet at the external surface. A flow accumulator adjacent the inlet may protrude from the internal surface. A method of making an engine component is also provided and comprises the step of forming a component wall comprising an accumulator on an internal surface and a film hole defined by the component wall. The film hole may include an opening adjacent the accumulator and defined by the internal surface.