Abstract:
A gas turbine engine includes a structure that has walls that provide a cooling passage and a cooling surface. A non-ferrous obstruction is relative to the walls. The obstruction includes a portion spaced from the cooling surface to provide a gap which is configured to receive a cooling fluid.
Abstract:
This disclosure relates to a gas turbine engine including a first engine component and a second engine component. The first engine component has a mate face adjacent a mate face of the second engine component. The engine further includes a seal provided between the mate face of the first engine component and the mate face of the second engine component. The seal includes least one trough.
Abstract:
An airfoil for a gas turbine engine includes an outer airfoil wall that provides an exterior surface and multiple radially extending cooling passages. The exterior surface provides pressure and suctions sides joined by leading and trailing edges. The cooling passages include a supply passage arranged upstream from and in fluid communication with a trailing edge passage. A cooling hole extends through the outer airfoil wall from the supply passage to the exterior surface on the suction side.
Abstract:
An airfoil for a gas turbine engine includes an outer airfoil wall that provides an exterior surface and multiple radially extending cooling passages. The exterior surface provides pressure and suctions sides joined by leading and trailing edges. The cooling passages include a supply passage arranged upstream from and in fluid communication with a trailing edge passage. A cooling hole extends through the outer airfoil wall from the supply passage to the exterior surface on the suction side.
Abstract:
This disclosure relates to a gas turbine engine including a first engine component and a second engine component. The first engine component has a mate face adjacent a mate face of the second engine component. The engine further includes a seal provided between the mate face of the first engine component and the mate face of the second engine component. The seal includes least one trough.
Abstract:
A method of manufacturing a component that includes providing a core structure, casting a component about the core structure, removing a first portion of the core structure from the cast component, and leaving a second portion of the core structure in the cast component to provide a reduced cross-section in the cast component.
Abstract:
A turbine blade according to an example of the present disclosure includes, among other things, a platform extending from a root section, an airfoil section extending radially from the platform to an airfoil tip, a plurality of cooling passages defined in an external wall of the airfoil tip, the plurality of cooling passages extending radially between the airfoil tip and a cavity in the airfoil section bounded by the external wall, and each of the plurality of cooling passages defining an inlet port along the cavity and an exit port adjacent the airfoil tip, and at least one internal feature within each of the plurality of cooling passages that meter flow to the respective exit port.
Abstract:
A turbine blade according to an example of the present disclosure includes, among other things, a platform, an airfoil tip, and an airfoil section between the platform and the airfoil tip. The airfoil section has a cavity spaced radially from the airfoil tip and a plurality of cooling passages radially between the cavity and the airfoil tip. Each of the plurality of cooling passages defines an exit port adjacent the airfoil tip. An internal feature within each of the plurality of cooling passages is configured to meter flow to the exit port.
Abstract:
A gas turbine engine component includes a body with a wall surrounding an interior cavity. The wall has opposed interior and exterior surfaces. The interior surface has a plurality of coolant inlets and the exterior surface has a coolant outlet defined therein. A coolant conduit extends between the coolant inlets and the coolant outlet and is configured and adapted to induce secondary flow vortices in coolant traversing the coolant conduit and in an adherent coolant film over a portion of the exterior surface of component body.
Abstract:
A gas turbine engine component includes a wall that provides an exterior surface and an interior flow path surface. The wall has a wall thickness. A protrusion is arranged on the wall that extends a height beyond the wall thickness and provides a portion of the interior flow path surface. A film cooling hole that has an inlet is provided on the protrusion and extends to an exit on the exterior surface.