Abstract:
A method for thermally-sensitive coating analysis of a component includes imaging the coated, exposed component over a range of distinct frequencies as selected by a narrowband variable filter; estimating parameters of non-uniformity correction (NUC) for every pixel at every wavelength; constructing a 2D temperature map on a pixel-by-pixel basis using the non-uniformity correction; and mapping the 2D temperature map to a 3D computer aided design (CAD) model.
Abstract:
Systems and methods for controlling a fluid based engineering system are disclosed. The systems and methods may include a model processor for generating a model output, the model processor including a set state module for setting dynamic states of the model processor, the dynamic states input to an open loop model based on the model operating mode, where the open loop model generates current state derivatives, solver state errors, and synthesized parameters as a function of the dynamic states and a model input vector, where a constraint on the current state derivatives and solver state errors is based a series of cycle synthesis modules. The series of cycle synthesis modules may include a flow module for mapping a flow curve relating a compressible flow function to a pressure ratio and for defining a solution point located on the flow curve and a base point located off the flow curve.
Abstract:
A method for thermally-sensitive coating analysis of a component includes imaging the coated, exposed component over a range of distinct frequencies as selected by a narrowband variable filter; estimating parameters of non-uniformity correction (NUC) for every pixel at every wavelength; constructing a 2D temperature map on a pixel-by-pixel basis using the non-uniformity correction; and mapping the 2D temperature map to a 3D computer aided design (CAD) model.
Abstract:
Systems and methods for controlling a fluid based engineering system are disclosed. The systems and methods may include a model processor for generating a model output, the model processor including a set state module for setting dynamic states of the model processor, the dynamic states input to an open loop model based on the model operating mode, where the open loop model generates current state derivatives, solver state errors, and synthesized parameters as a function of the dynamic states and a model input vector, where a constraint on the current state derivatives and solver state errors is based a series of cycle synthesis modules. The series of cycle synthesis modules may include a flow module for mapping a flow curve relating a compressible flow function to a pressure ratio and for defining a solution point located on the flow curve and a base point located off the flow curve.
Abstract:
Systems and methods for controlling a fluid based engineering system are disclosed. The systems and methods may include a model processor for generating a model output, the model processor including a set state module for setting dynamic states of the model processor, the dynamic states input to an open loop model based on the model operating mode, wherein the open loop model generates a current state model as a function of the dynamic states and the model input, wherein a constraint on the current state model is based a series of cycle synthesis modules, each member of the series of cycle synthesis modules modeling a component of a cycle of the control system and including a series of utilities, the utilities are based on mathematical abstractions of physical properties associated with the component. The series of cycle synthesis modules may include a flow module for mapping a flow curve relating a compressible flow function to a pressure ratio and for defining a solution point located on the flow curve and a base point located off the flow curve.
Abstract:
Systems and methods for controlling a fluid based engineering system are disclosed. The systems and methods may include a model processor for generating a model output, the model processor including a set state module for setting dynamic states of the model processor, the dynamic states input to an open loop model based on the model operating mode, wherein the open loop model generates a current state model as a function of the dynamic states and the model input, wherein a constraint on the current state model is based a series of cycle synthesis modules, each member of the series of cycle synthesis modules modeling a component of a cycle of the control system and including a series of utilities, the utilities are based on mathematical abstractions of physical properties associated with the component. The series of cycle synthesis modules may include a flow module for mapping a flow curve relating a compressible flow function to a pressure ratio and for defining a solution point located on the flow curve and a base point located off the flow curve.