Abstract:
The invention relates to a method (100) for estimating an operating parameter of a battery cell of a battery unit in an electrical propulsion system of a vehicle, the operating parameter being indicative of one of capacity and impedance of the battery cell, the method comprising: selecting (110) at least one battery cell in the battery unit for determining the operating parameter of the battery cell; providing (120) a set of state-of-charge (SOC) estimators, each SOC estimator having a selected operating parameter value for a given time period; and using (130) the set of SOC estimators to determine a value of the operating parameter of the battery cell by performing voltage error minimization.
Abstract:
A computer implemented method for controlling the operation of an engine system in a vehicle is provided. The engine system comprising an engine and an exhaust aftertreatment system for reducing at least NOx emissions of the exhaust gases from the engine using a reductant, the engine system comprising a plurality of engine system components configured to perform a plurality of NOx emission reducing activities.
Abstract:
A computer implemented method for anomality detection at a first nitrogen oxide (NOx) sensor forming part of an exhaust gas aftertreatment system (EATS) is provided. The EATS is coupled downstream of an internal combustion engine (ICE). The disclosed methodology applies manipulation of the ICE for detecting such a possible anomality.
Abstract:
A method is provided for monitoring the status of a plurality of battery cells in a battery pack the method including: arranging the battery cells in at least two groups of cells; connecting the groups of cells to a sensor unit; and obtaining, by means of the sensor unit, at least one sensor measurement for each group which is indicative of the state of operation of the battery pack. The method according to the invention further includes: determining a cell measurement for each battery cell by means of an over-determined equation system which defines the cell measurement as a function of the sensor measurement; and evaluating any residual terms resulting from the equation system in order to identify any battery cell having a cell measurement which deviates from an expected value based on the remaining battery cells. A battery management system for monitoring the status of a plurality of connected battery cells as mentioned above is also provided.
Abstract:
A method for monitoring the status of a plurality of connected battery cells in a battery pack includes: arranging the battery cells in at least two groups of cells; connecting the groups of cells to a sensor unit; and providing a measurement of at least one parameter indicative of the state of operation of the battery pack by the sensor unit. The method further includes arranging the groups of cells m a manner so that at least two of the groups include two or more cells and at least two of the groups overlap so that a cell forms part of the overlapping groups; and connecting the sensor unit to the groups; and wherein the number of groups is less than the number of cells.
Abstract:
A computer implemented method for controlling the operation of an engine system in a vehicle is provided. The engine system comprising an engine and an exhaust aftertreatment system for reducing at least NOx emissions of the exhaust gases from the engine using a reductant, the engine system comprising a plurality of engine system components configured to perform a plurality of NOx emission reducing activities.
Abstract:
A method for diagnosing a part of a powertrain system is provided. The powertrain system comprising an internal combustion engine system having an internal combustion engine provided with a plurality of cylinders, each cylinder being provided with an air inlet valve and an exhaust gas valve, the method comprising the steps of operating any one of the inlet valve and the exhaust valve for any one of the cylinders to adjust the frequency and/or duration of air pulses during different load conditions of the internal combustion engine; determining an operational behaviour of the part of the powertrain system in response to the adjusted frequency and/or duration of the air pulses; and comparing the determined operational behaviour of the part of the powertrain system with an expected behaviour of the part of the powertrain system.
Abstract:
The invention relates to a method for monitoring the status of a plurality of battery cells (C1-C5) in a battery pack (1), said method comprising: arranging said battery cells (C1-C5) in at least two groups (G1-G3) of cells; connecting said groups (G1-G3) of cells to a sensor unit (7b); and obtaining, by means of said sensor unit (7b), at least one sensor measurement (U1sens, U2sens, U3sens) for each group (G1-G3) which is indicative of the state of operation of said battery pack (7a). The method according to the invention further comprises: determining a cell measurement (U1cell, U2cell, . . . ) for each battery cell (C1-C5) by means of an over-determined equation system which defines said cell measurement (U1cell, U2cell, . . . ) as a function of said sensor measurement (U1sens, U2sens, U3sens); and evaluating any residual terms resulting from said equation system in order to identify any battery 1 cell having a cell measurement (Ucell) which deviates from an expected value based on the remaining battery cells. The invention also relates to a battery management system (12) for monitoring the status of a plurality of connected battery cells (C1-C5) as mentioned above.
Abstract:
A method is provided for balancing a battery pack including a plurality of battery cells connected in series, wherein each battery cell is associated with a resistor which is connected in parallel with the battery cell and wherein each of the resistors is coupled in series with a controllable switch which is connected to a control unit. The method includes selectively closing and opening the switch so as to initiate discharging of the corresponding battery cell, thereby balancing the battery cell in relation to other cells of the battery pack. Furthermore, the method includes a) defining a control variable indicating, for each switch, an open or closed condition, b) determining a cost based at least on the current losses of the battery pack resulting from the switch being controlled according to the control variable, repeating steps a) and b) a predefined number of times, d) selecting a control variable which results in the cost being minimized, and e) initiating the balancing based on the selected control variable. A system for balancing a battery pack is also provided.