摘要:
An acceleration sensor unit including a board on which an acceleration sensor is mounted, a support part for supporting the board, and a housing in which the support part and the acceleration sensor are contained, the board is installed in the housing by means of the support part so as to swing with respect to the housing.
摘要:
An acceleration sensor unit including a board on which an acceleration sensor is mounted, a support part for supporting the board, and a housing in which the support part and the acceleration sensor are contained, the board is installed in the housing by means of the support part so as to swing with respect to the housing.
摘要:
A rollover judging device adjusts the magnitude of an angular velocity component ω of a vehicle in a direction of a rollover, which is measured by an angular velocity sensor 1, by using an ω adjusting unit 3c on the basis of an acceleration component of the vehicle in its rightward or leftward direction or in its upward or downward direction, which is measured by an acceleration sensor 2, calculates an angle component θo by integrating with respect to time this adjusted angular velocity component ωo by using an integrator 3d, carries out predetermined multiplication and addition processes by using a judging means 4 on the basis of this angle component θo and the measured angular velocity component ω, and, when the result of this addition process exceeds a preset threshold Th, outputs a signal indicating judgment of occurrence of a rollover to an air bag control device 5.
摘要:
A rollover judging device adjusts the magnitude of an angular velocity component ω of a vehicle in a direction of a rollover, which is measured by an angular velocity sensor 1, by using an ω adjusting unit 3c on the basis of an acceleration component of the vehicle in its rightward or leftward direction or in its upward or downward direction, which is measured by an acceleration sensor 2, calculates an angle component θo by integrating with respect to time this adjusted angular velocity component ωo by using an integrator 3d, carries out predetermined multiplication and addition processes by using a judging means 4 on the basis of this angle component θo and the measured angular velocity component ω, and, when the result of this addition process exceeds a preset threshold Th, outputs a signal indicating judgment of occurrence of a rollover to an air bag control device 5.
摘要:
A starting apparatus of a passenger protecting apparatus is actuated by detecting collision of a vehicle. The starting apparatus is provided so as to subtract a predetermined value from an acceleration signal fed from G sensor and integrate the subtracted acceleration signal, and forcedly set an integrated value to zero if the integrated value is less than zero. Further, the starting apparatus is provided so as to provide a starting signal when the integrated value exceeds a preset threshold value. Therefore, it is possible to discriminate collision to start the apparatus from other collision, prevent starting means from being unnecessarily actuated, and avoid malfunction of the starting means.
摘要:
A device for starting an occupant crash protector can output, as a start signal, a logical product of an output of a collision determining mechanism and an output of a non-collision determining mechanism. The collision determining mechanism detects a collision including an impact that does not require a start-up. The non-collision determining mechanism detects only a collision that requires a start-up using a value obtained by subtracting a value varied with time from the output of an acceleration sensor and integrating the result of the subtraction.
摘要:
Disclosed herein is a start control device for starting a vehicle passenger protecting device such as an air bag, which does not respond to an impact against which the vehicle passenger protecting device must not be started, but quickly responds to a collision against which the vehicle passenger protecting device must be started. The start control device includes a start level generator for setting a decision level of start signal generation to a higher level for a predetermined time from a rise timing of an acceleration signal obtained from an acceleration sensor in deciding a collision by using an integral value of the acceleration signal. With this arrangement, in case of the impact against which the vehicle passenger protecting device must not be started, the start signal can be prevented from being generated.
摘要:
A device of detecting collision of a vehicle for determining collision of a vehicle based on an acceleration from an acceleration detecting means for detecting a collision acceleration of the vehicle, the device including a collision force calculating means for calculating an estimated collision force caused in the vehicle in the collision based on the collision acceleration and a collision determining means for determining the collision based on the estimated collision force.
摘要:
A starting apparatus of a passenger protecting apparatus is actuated by detecting collision of a vehicle. The starting apparatus is provided so as to subtract a predetermined value from an acceleration signal fed from G sensor and integrate the subtracted acceleration signal, and forcedly set an integrated value to zero if the integrated value is less than zero. Further, the starting apparatus is provided so as to provide a starting signal when the integrated value exceeds a preset threshold value. Therefore, it is possible to discriminate collision to start the apparatus from other collision, prevent starting means from being unnecessarily actuated, and avoid malfunction of the starting means.
摘要:
A starting device integrates an output signal of an acceleration sensor by a band-pass integrating means while restricting an upper limit of the output signal in a specified frequency range by an upper limit restricting means, and is provided with a comparing means for outputting a starting signal when the integrated value is larger than a predetermined threshold value. In this way, the starting device is certainly started by an acceleration waveform of collision that must start the device. Further, the device is not influenced by vibration components caused immediately after the beginning of collision with respect to a low-speed collision such as 8 mile/hour frontal collision that must not start the device.