Abstract:
A sensor-location system for locating sensors in a tract covered by an earth-based sensor network. The sensor-location system includes at least one sensor-identification device, and at least one sensor locator. The sensor-identification device is affixed to a respective sensor in the earth-based sensor network. The sensor locator is configured for use from on board of an aircraft. In addition, the sensor locator is configured to acquire geographic-location data of said sensor including an identifying signature from the sensor-identification device of the sensor in the tract covered by the earth-based sensor network.
Abstract:
A luminescent chemical sensor integrated with at least one molecular trap. The luminescent chemical sensor includes at least one molecular trap and at least one metallic-nanofinger device integrated with at least one molecular trap. The molecular trap includes a plurality of electrodes that trap at least one analyte molecule. The metallic-nanofinger device includes a substrate, and a plurality of nanofingers coupled with the substrate. A nanofinger of the plurality includes a flexible column, and a metallic cap coupled to an apex of the flexible column. At least the nanofinger and a second nanofinger of the plurality of nanofingers are to self-arrange into a close-packed configuration with the analyte molecule. A method for using, and a chemical-analysis apparatus including the luminescent chemical sensor are also provided.
Abstract:
A double-effective vaccine vector against foot-and-mouth disease virus having a bicistronic expression vector sequence, the bicistronic expression vector sequence is an antisense gene sequence capable of conjugating with 5′ UTR of RNA of the foot-and-mouth disease virus genome and an intact sequence of VP1 structural protein gene of the foot-and-mouth disease virus. Animal experiments show that the vaccine vector provides double effects in terms of gene therapy and gene immunization for the prevention and treatment of foot-and-mouth disease in animals. Also provided are construction methods and methods of use of the vaccine vector.
Abstract:
In a method of fabricating an apparatus for use in a sensing application, a plurality of nano-fingers are formed on a substrate and a Raman-active material nano-particle is formed on respective tips of the nano-fingers. In addition, the Raman-active material nano-particles on the tips of adjacent ones of the nano-fingers are caused to come into contact with the Raman-active material nano-particle on the tip of at least another one of the plurality of nano-fingers to form respective clusters and the clusters of Raman-active material nano-particles are transferred to a component layer from the plurality of nano-fingers while maintaining a spatial relationship between the contacting Raman-active material nano-particles.
Abstract:
The invention relates to a process cartridge, which comprises a process cartridge housing, a photosensitive member, a driving force receiving opening, a retractable mechanism and a control mechanism, wherein the photosensitive member is arranged inside the process cartridge housing; the driving force receiving opening is connected with the photosensitive member and provides a driving force for the photosensitive member; the retractable mechanism allows the driving force receiving opening to extend or retract in the axial direction of the photosensitive member; and the control mechanism controls the extension and retraction of the retractable mechanism.
Abstract:
An integrated device for enhancing signals in Surface Enhanced Raman Spectroscopy (SERS). The integrated device comprising an array of nanostructures comprising a material, wherein the material is configured to allow light to pass through. The integrated device also comprising SERS active nanoparticles disposed on at least portion of the array of nanostructures and a mirror integrated below a base of the array of nanostructures. The mirror is configured to reflect light passing through the material into the array of nanostructures.