Abstract:
A method for manufacturing a heat transfer device is described. The method includes: mortising a porous core into a first hollow tube; mortising a second hollow tube on the first hollow tube; covering a heat conductor on the first hollow tube; and connecting a connecting pipe to the first hollow tube and the second hollow tube.
Abstract:
A heat pipe cooling system including an evaporator, a pipeline, a working fluid and a thermal connector is provided. The evaporator is connected to a heat-generating element, and the pipeline is connected to the evaporator. The working fluid is injected into a closed loop formed by the evaporator and the pipeline. The thermal connector includes a first thermal conductive block and a second thermal conductive block. The first thermal conductive block has many first fitting parts and a contact surface. The contact surface is suitable for attaching to one of the surfaces of an object. The second thermal conductive block has many second fitting parts. The second fitting parts are suitable for meshing with the first fitting parts to form a piping channel inside the thermal connector. The piping channel is suitable for enclosing a section of the pipeline or directly serving as a part of the pipeline.
Abstract:
The heat transfer device at least comprises: an evaporator, a heat conductor and a connecting pipe. The evaporator comprises: a first hollow tube; a porous core mortised inside the first hollow tube; and a second hollow tube mortised on the first hollow tube. The heat conductor 220 covers the evaporator. The heat conductor is on the heating device. The connecting pipe is connected to first and second hollow tubes. The connecting pipe is used for containing a working fluid. The condenser is on the connecting pipe. The porous core, the first and second hollow tube, and the heat conductor are mortised together so as to simplify the manufacturing process, and reduce the cost. Further, the evaporator is tightly covered and fixed by the heat conductor so that the heat generated by the heating device can be uniformly conducted to the evaporator to enhance the heat conductivity.
Abstract:
A light emitting diode (LED) illumination apparatus including an illumination module, a heat dissipating unit and a loop heat pipe (LHP) device is provided. The illumination module includes a base and many LEDs. The LEDs are disposed on the base. The LHP device contains working fluid and includes an evaporator, a condenser, a first transmitting pipe and a second transmitting pipe. The evaporator is associated with the base and has an outlet, an inlet and a chamber. The condenser is conformably associated with the heat dissipating unit. The condenser has an inlet and an outlet, wherein at least one part of the condenser stretches in a curved pipe shape along a surface of the heat dissipating unit. The first transmitting pipe communicates the evaporator outlet to the condenser inlet. The second transmitting pipe communicates the condenser outlet to the evaporator inlet.
Abstract:
An evaporator suitable for absorbing heat from a heat source is provided. The evaporator includes a top board, a bottom board, a side frame, and at least one porous member. The side frame connects the top board and the bottom board. The porous member is disposed between the top board and the bottom board and within the side frame. The part of the top board covering the porous member is a heat conducting portion near the heat source. The evaporator has at least one first channel, at least one second channel, a fluid inlet, and a fluid outlet. The first channel is adjacent to the bottom board and the porous member for containing a working fluid. The second channel is adjacent to the top board and the porous member for containing the working fluid. The fluid inlet communicates with the first channel. The fluid outlet communicates with the second channel.
Abstract:
An evaporator suitable for absorbing heat from a heat source is provided. The evaporator includes a top board, a bottom board, a side frame, and at least one porous member. The side frame connects the top board and the bottom board. The porous member is disposed between the top board and the bottom board and within the side frame. The part of the top board covering the porous member is a heat conducting portion near the heat source. The evaporator has at least one first channel, at least one second channel, a fluid inlet, and a fluid outlet. The first channel is adjacent to the bottom board and the porous member for containing a working fluid. The second channel is adjacent to the top board and the porous member for containing the working fluid. The fluid inlet communicates with the first channel. The fluid outlet communicates with the second channel.