Abstract:
The invention relates to a method and an arrangement for reducing the amount of messages sent in a communication network comprising a first communication network entity (200), a second communication network entity (100) connected to said first communication network entity (200) over a communication interface and one or more user equipments (120) connected to said second communication network entity (100) over a radio interface, whereby messages are sent on said interfaces using at least a first and a second protocol. General rules are provided for sending first protocol messages packed inside second protocol messages, so called “piggybacking”, and each first protocol message is provided with an instruction field defining a co-ordination of procedure steps to be taken for performing an action.
Abstract:
In one disclosed embodiment, data information is stored in a buffer in a transmitter. The data information is transmitted on a shared channel and control information for recovering the associated data information is transmitted on a dedicated channel. The shared and dedicated channels can be, for example, different portions of the frequency band. The control information can include a spreading factor used to spread the data at the transmitter. For example, the spreading factor can be the length of the Walsh function orthogonal coding used to spread the data. The control information is received over the dedicated channel before the associated data information is received over the shared channel. The control information is then used to recover the associated data information. For example, knowing the spreading factor from the control information, the correct Walsh function can be selected to de-spread, i.e. to Walsh de-cover, the data information.
Abstract:
The invention relates to a method and an arrangement for reducing the amount of messages sent in a communication network comprising a first communication network entity, a second communication network entity connected to said first communication network entity over a communication interface and one or more user equipments connected to said second communication network entity over a radio interface, whereby messages are sent on said interfaces using at least a first and a second protocol. General rules are provided for sending first protocol messages packed inside second protocol messages, so called “piggybacking”, and each first protocol message is provided with an instruction field defining a co-ordination of procedure steps to be taken for performing an action.
Abstract:
In one disclosed embodiment, data information is stored in a buffer in a transmitter. The data information is transmitted on a shared channel and control information for recovering the associated data information is transmitted on a dedicated channel. The shared and dedicated channels can be, for example, different portions of the frequency band. The control information can include a spreading factor used to spread the data at the transmitter. For example, the spreading factor can be the length of the Walsh function orthogonal coding used to spread the data. The control information is received over the dedicated channel before the associated data information is received over the shared channel. The control information is then used to recover the associated data information. For example, knowing the spreading factor from the control information, the correct Walsh function can be selected to de-spread, i.e. to Walsh de-cover, the data information.
Abstract:
A method of detecting a jamming transmitter includes the steps of indicating that a communication user equipment is capable of communicating in a cellular code division multiple access based radio network; testing a match of a uniform synchronization signal sequence of a synchronization channel; detecting a power indicator indicative of an unbiased wide band power of a received radio signal strength and comparing the power indicator to a noise floor threshold; and indicating a jamming affection of the communication user equipment in the case where (i) the communication indication is on hold; and (ii) the uniform synchronization sequence of the synchronization channel is not matched in the test, and (iii) the power indicator exceeds the noise floor threshold.
Abstract:
One or more aspects of the disclosure provide an efficient equalization scheme capable of mitigating multi-path interference on channels with large delay spread using short-length equalizers. That is, by dividing stored samples of a signal received on the multi-path channel by time into a plurality of clusters, a short-length equalizer can be utilized in an iterative fashion on each of the clusters, thus eliminating the need for a large length equalizer while still providing improved performance over that of a Rake receiver at large delay spreads. Other aspects, embodiments, and features are also claimed and described.
Abstract:
A CDMA receiving device is provided which can prevent erroneous determination of an SFN detection. The CDMA receiving device (1) performs detection of a slot boundary in a slot timing detection unit (14), and performs detection of frame timing and code group in a code group identification unit (15), with regard to each slot timing detected in this way. The CDMA receiving device (1) uses a P-CPICH to detect scrambling code in a scrambling code identification unit (16) from the detected frame timing and code group. The CDMA receiving device (1) performs detection of SFN in a broadcast channel decoding unit (17) from the frame timing and the scrambling code. A P-CCPCH is used in the detection of the SFN. The SFN is included in the P-CCPCH and it is possible to detect SFN timing of a base station by decoding a BCH.
Abstract:
A CDMA receiving device is provided which can prevent erroneous determination of an SFN detection. The CDMA receiving device (1) performs detection of a slot boundary in a slot timing detection unit (14), and performs detection of frame timing and code group in a code group identification unit (15), with regard to each slot timing detected in this way. The CDMA receiving device (1) uses a P-CPICH to detect scrambling code in a scrambling code identification unit (16) from the detected frame timing and code group. The CDMA receiving device (1) performs detection of SFN in a broadcast channel decoding unit (17) from the frame timing and the scrambling code. A P-CCPCH is used in the detection of the SFN. The SFN is included in the P-CCPCH and it is possible to detect SFN timing of a base station by decoding a BCH.
Abstract:
In one disclosed embodiment, data information is stored in a buffer in a transmitter. The data information is transmitted on a shared channel and control information for recovering the associated data information is transmitted on a dedicated channel. The shared and dedicated channels can be, for example, different portions of the frequency band. The control information can include a spreading factor used to spread the data at the transmitter. For example, the spreading factor can be the length of the Walsh function orthogonal coding used to spread the data. The control information is received over the dedicated channel before the associated data information is received over the shared channel. The control information is then used to recover the associated data information. For example, knowing the spreading factor from the control information, the correct Walsh function can be selected to de-spread, i.e. to Walsh de-cover, the data information.
Abstract:
A method of detecting a jamming transmitter includes the steps of indicating that a communication user equipment is capable of communicating in a cellular code division multiple access based radio network; testing a match of a uniform synchronization signal sequence of a synchronization channel; detecting a power indicator indicative of an unbiased wide band power of a received radio signal strength and comparing the power indicator to a noise floor threshold; and indicating a jamming affection of the communication user equipment in the case where (i) the communication indication is on hold; and (ii) the uniform synchronization sequence of the synchronization channel is not matched in the test, and (iii) the power indicator exceeds the noise floor threshold.