摘要:
A strengthened glass container or vessel such as, but not limited to, vials for holding pharmaceutical products or vaccines in a hermetic and/or sterile state. The strengthened glass container undergoes a strengthening process that produces compression at the surface and tension within the container wall. The strengthening process is designed such that the tension within the wall is great enough to ensure catastrophic failure of the container, thus rendering the product unusable, should sterility be compromised by a through-wall crack. The tension is greater than a threshold central tension, above which catastrophic failure of the container is guaranteed, thus eliminating any potential for violation of pharmaceutical integrity.
摘要:
A tempering furnace for tempering a glass object may include a housing, a heating device for heating the glass object, and a cooling device for cooling the glass object. Additionally, the tempering furnace may further include a turning device provided for turning the glass object inside the housing. The turning device is configured to counteract an effect of gravitational forces on the glass object when the glass object is heated to its softening phase.
摘要:
A strengthened glass container or vessel such as, but not limited to, vials for holding pharmaceutical products or vaccines in a hermetic and/or sterile state. The strengthened glass container undergoes a strengthening process that produces compression at the surface and tension within the container wall. The strengthening process is designed such that the tension within the wall is great enough to ensure catastrophic failure of the container, thus rendering the product unusable, should sterility be compromised by a through-wall crack. The tension is greater than a threshold central tension, above which catastrophic failure of the container is guaranteed, thus eliminating any potential for violation of pharmaceutical integrity.
摘要:
A dead plate arrangement for a glass forming machine is characterized by a housing (33) which is bordered on the upper side by a dead plate (1) which is divided into fields (16, 16′, 16″) intended for putting hollow glass articles to be cooled thereon, wherein to each field, a dynamic pressure chamber (3) is allocated which is connected to a supply air chamber (4) via a valve (9), and wherein the supply air chamber (4) is connected to a cooling air supply via a valve (5). The valves (5, 9) are continuously controllable between an opening position and a closed position so that the pressure can be set for each of the dynamic pressure chambers (3), and therefore the cooling capacity of each of the fields (16, 16′, 16″) can be set individually depending on the properties of the hollow glass article to be cooled. In connection with database-supported setpoint values for article-specific dimensioning of the cooling air flows of each field, an individual cooling capacity according to demand can be implemented which is adapted to the respective hollow glass article.
摘要:
An apparatus for manufacturing strengthened glass containers, and more particularly the construction and operation of a base cooling nozzle in an apparatus for thermally strengthening glass containers in a glass container manufacturing line at a location intermediate the hot end and the cold end. Glass containers formed at an I.S. machine are conveyed through a special tempering Lehr that heats them uniformly to a high temperature that is short of temperatures at which they may become deformed. Subsequently, the glass containers are rapidly thermally strengthened in a cooling station in which the outer and inner surfaces including all areas of the glass containers are simultaneously cooled to a temperature below the Strain Point of the glass used in the glass containers, with the base cooling nozzles being used to cool the bottoms of the glass containers.
摘要:
A method of manufacturing of strengthened glass containers, and more particularly a method of thermally strengthening glass containers in a glass container manufacturing line while they are on a conveyor intermediate the hot end and the cold end. Glass containers formed at an I. S. machine are conveyed through a special tempering Lehr that heats them uniformly to a high temperature that is short of temperatures at which they may become deformed. Subsequently, the glass containers while being transported on a conveyor are subjected to a unique rapid thermal strengthening cooling process in which the outer and inner surfaces including all areas of the glass containers are simultaneously cooled to a temperature below the Strain Point of the glass used in the glass containers.
摘要:
A method of manufacturing of strengthened glass containers, and more particularly a method of thermally strengthening glass containers in a glass container manufacturing line at a location intermediate the hot end and the cold end. Glass containers formed at an I. S. machine are conveyed through a special tempering Lehr that heats them uniformly to a high temperature that is short of temperatures at which they may become deformed. Subsequently, the glass containers are subjected to a unique rapid thermal strengthening cooling process in which the outer and inner surfaces including all areas of the glass containers are simultaneously cooled to a temperature below the Strain Point of the glass used in the glass containers.
摘要:
In order to permit more effective cooling in comparison to the prior art, in particular in its floor area, of a hollow glass article (1) standing upright on the base (2) of a setting plate (4) provided with transcurrent orifices (9, 9′, 9″) forming a cavity (8) between a base (2) and the facing surface of the setting plate (4) of the standing surface (2″), it is proposed to utilize a part of the orifices (9) situated inside the standing surface (2″) for the supply of cooling air into the cavity (8), and to utilize the remaining orifices (9′) inside the standing surface (2″) only for the extraction of cooling air from the cavity (8). By configuring the orifices (9, 9′) that are utilized in each case for the supply and extraction of cooling air into and out of the cavity (8) so that they are at least approximately cross-sectionally identical, a throughput of cooling air through the cavity (8) and thus the available cooling performance can be varied within broad limits, but in the absence of an adverse effect on the stability of the hollow glass article (1) or a resulting risk of uncontrolled positional displacements on the setting plate (4).
摘要:
A glass panel for a cathode ray tube including a substantially rectangular face portion and a skirt portion. Further constituting a side wall of the face portion, a compressive stress layer having a thickness of at least 1/10 of the thickness of the face portion, is formed on each of the inner and outer surfaces of a useful screen area of the face portion, so as to satisfy 0.4.ltoreq..sigma..sub.di /.sigma..sub.ci .ltoreq.1.0, where .sigma..sub.ci is the compressive stress on the inner surface at the center of the useful screen area, and .sigma..sub.di is the compressive stress on the inner surface in the vicinity of ends of diagonal axial lines of the useful screen area.
摘要翻译:一种用于阴极射线管的玻璃面板,其包括基本上矩形的面部和裙部。 进一步构成面部的侧壁,在每个内表面和外表面上形成厚度至少为+ E的压应力层,面积部分的厚度为1/10 + EE 面积部分的屏幕面积,以便满足0.4σ/ sigma ci = 1.0,其中σci是在有用屏幕区域的中心处的内表面上的压缩应力,σdi是 在有用屏幕区域的对角轴线端部附近的内表面上的压缩应力。
摘要:
A glass bulb is physically reinforced to provide a tensile stress in the nearly central portion of wall thickness in the wall thickness direction and to provide a compressive stress on the surface. The physical reinforcement is specifically applied by air cooling reinforcement. The completed CRT is further shrinkage fitted so as to tighten the outer side face of a panel by a metal ring. At the time of the air cooling reinforcement, reinforcement is optimized by reinforcing the glass bulb (or the panel or a funnel) so as to be more effective by adding the stress distribution in a vacuum state of the picture tube having a rectangular screen and by the shrinkage fitting achieved by the metal ring. As a result, the problem of heavy weight, which was one of major defects of mass produced CRTs, is solved while the risk of implosion is still avoided.