Abstract:
One aspect of the invention relates to a fully automatic method for calculating the current, geo-referenced position and alignment of a terrestrial scan-surveying device in situ on the basis of a current panoramic image recorded by the surveying device and at least one stored, geo-referenced 3D scan panoramic image.
Abstract:
A method for detecting a displacement of a mobile platform includes obtaining a first frame and a second frame using an imaging device associated with the mobile platform and determining the displacement of the mobile platform based upon the first frame and the second frame.
Abstract:
A distance measuring apparatus includes: an acquisition unit that acquires a first image at a first viewpoint where an object is irradiated with a first light including a pattern, a second image at a second viewpoint different from the first viewpoint where the object is irradiated with the first light, a third image at the first viewpoint where the object is irradiated with a second light not including a pattern, and a fourth image at the second viewpoint where the object is irradiated with the second light; and a control unit that acquires information corresponding to a distance, by employing a fifth image obtained based on a ratio the first image and the third image and a sixth image obtained based on a ratio of the second image and the fourth image.
Abstract:
An information processing apparatus includes a position detecting unit detecting a position, an explanation information storage unit storing explanation position information and explanation information, a generation unit extracting the explanation information corresponding to a first explanation position from the explanation information storage unit and generating the extracted explanation information with a sound when the first explanation position is detected within a first distance from the detected position, and a group determining unit determining whether or not the first explanation position belongs to the same group as a second explanation position when the second explanation position is detected within the first distance from the detected position after the generation unit starts the generating of the explanation information corresponding to the first explanation position with a sound, wherein the generation unit continues to reproduce the explanation information with a sound when both explanation positions belong to the same group.
Abstract:
Embodiments of the present invention provide a method and system for generating an online listing, such as a yellow pages listing, that includes information about an object, such as a business, and also includes at least one image of the structure containing the object. For example, the image may be a digital image of the store front of a business taken at a street view. Additionally, a user may select an image from a plurality of images that the user perceives as being an appropriate representative image for the business. Based on votes received a default representative image may be identified that is provided in response to a request for information about the business.
Abstract:
Geographical maps, orthomosaics, 2D/3D models and other photogrammetry products are typically generated from RGB image data. This requires a conversion step from the captured raw format image to RGB. Such conversion can result in image artifacts, blurring and reduction of image resolution, loss of dynamic range, increase in image data size etc. A method is disclosed to avoid conversion into standard RGB image formats at the time of capture and to preserve the full data integrity and image quality all the way through the photogrammetry workflow. Having the raw format image data available at all stages in the workflow will make it possible to extract exactly the data needed at any step in this workflow without compromising the data for other steps. This leads to significant savings in terms of storage space, data transfer bandwidth and processing resource requirements.
Abstract:
In order to detect possible damage to a delivered product, a set of first images of the product is created prior to delivery which are used to generate a first 3D photogrammetry model, and a set of second electronic images are created after delivery which are used to generate a second 3D photogrammetry model. The two models are then compared to determine whether there is a sufficient deviation to conclude the product has been damaged. The comparison is performed by a cognitive system trained with samples of before/after photogrammetry model pairs each associated with either a damaged condition or a not damaged condition. The baseline photogrammetry model is part of a blockchain record and the recipient photogrammetry model is added to the blockchain record. Intermediate photogrammetry models can also be built where there is more than one shipper along the delivery route to assign liability to the proper party.
Abstract:
Features of the surface of an object of interest captured in a two-dimensional (2D) image are identified and marked for use in point matching to align multiple 2D images and generating a point cloud representative of the surface of the object in a photogrammetry process. The features which represent actual surface features of the object may have their local contrast enhanced to facilitate their identification. Reflections on the surface of the object are suppressed by correlating such reflections with, e.g., light sources, not associated with the object of interest so that during photogrammetry, such reflections can be ignored, resulting in the creation of a 3D model that is an accurate representation of the object of interest. Prior to local contrast enhancement and the suppression of reflection information, identification and isolation of the object of interest can be improved through one or more filtering processes.
Abstract:
A method of balancing colors of three-dimensional (3D) points measured by a scanner from a first location and a second location. The scanner measures 3D coordinates and colors of first object points from a first location and second object points from a second location. The scene is divided into local neighborhoods, each containing at least a first object point and a second object point. An adapted second color is determined for each second object point based at least in part on the colors of first object points in the local neighborhood.
Abstract:
A method of targeting a missile. A plurality of images of a target, taken from a plurality of viewpoints, are received. Features in the images characteristic of the target are identified. Data representing the characteristic features are provided to the missile to enable the missile to identify, using the characteristic features, the target in images of the environment of the missile obtained from an imager included in the missile.