On-chip vacuum microtube device and method for making such device
    1.
    发明授权
    On-chip vacuum microtube device and method for making such device 失效
    片上真空微管装置及其制造方法

    公开(公告)号:US06803725B2

    公开(公告)日:2004-10-12

    申请号:US10646600

    申请日:2003-08-23

    Applicant: Sungho Jin

    Inventor: Sungho Jin

    CPC classification number: H01J21/08 H01J9/18 H01J9/244

    Abstract: In accordance with the invention, improved vacuum microtube devices are provided with arrangements for tunably spacing the gate and the cathode. Tuning can be effected by using an electrostaic or magnetic actuator to move the gate on a spring or a rail. Advantageously a feedback arrangement can be used to control the spacing. Magnetic reassembly components can be provided for facilitating release of tube components in fabrication.

    Abstract translation: 根据本发明,改进的真空微管装置具有用于可调地间隔栅极和阴极的布置。 调谐可以通过使用静电或磁性致动器来使门在弹簧或轨道上移动来实现。 有利地,可以使用反馈装置来控制间隔。 可以提供磁性重组组件以便于在制造中释放管部件。

    Microwave vacuum tube device employing grid-modulated cold cathode source having nanotube emitters
    2.
    发明授权
    Microwave vacuum tube device employing grid-modulated cold cathode source having nanotube emitters 有权
    采用具有纳米管发射体的并网冷阴极源的微波真空管装置

    公开(公告)号:US06297592B1

    公开(公告)日:2001-10-02

    申请号:US09631890

    申请日:2000-08-04

    Abstract: An improved gridded microwave tube is provided, the tube containing a cold cathode, an anode, and a grid located between the anode and cathode. In one embodiment, the cold cathode has a refractory metal substrate and carbon nanotube emitters, the emitters having a diameter of 1 to 300 nm and a length of 0.05 to 100 &mgr;m. The grid-cathode spacing is 1 to 100 &mgr;m, the grid contains apertures having a maximum dimension of 0.5 to 100 &mgr;m, and the grid thickness is 0.5 to 100 &mgr;m. Emission from the cathode directly onto the grid material itself, which undesirably heats the grid, is reduced by either (a) the presence of a shadow mask between the grid and the emitters or (b) selective formation of the emitters in locations that correspond to the grid apertures. The microwave tube operates at a frequency of greater than 0.5 GHz, advantageously greater than 2 GHz.

    Abstract translation: 提供了一种改进的网格微波管,该管包含位于阳极和阴极之间的冷阴极,阳极和栅极。 在一个实施方案中,冷阴极具有难熔金属基底和碳纳米管发射体,发射体的直径为1至300nm,长度为0.05至100μm。 栅极 - 阴极间距为1〜100μm,栅格包含最大尺寸为0.5〜100μm的孔,栅格厚度为0.5〜100μm。 通过(a)在栅格和发射体之间存在阴影掩模,或(b)在对应于栅格和发射体的位置中选择性地形成发射体,从阴极直接排放到栅格材料本身上,这不利地加热栅格, 网格孔。 微波管的工作频率大于0.5GHz,有利地大于2GHz。

    Adaptive heater voltage algorithm and control system for setting and maintenance of the heater voltage of a vacuum electron device
    3.
    发明授权
    Adaptive heater voltage algorithm and control system for setting and maintenance of the heater voltage of a vacuum electron device 有权
    用于设置和维护真空电子装置的加热器电压的自适应加热器电压算法和控制系统

    公开(公告)号:US06456009B1

    公开(公告)日:2002-09-24

    申请号:US09629315

    申请日:2000-07-31

    CPC classification number: H01J23/06 H01J1/135 H05G1/34

    Abstract: An adaptive heater voltage algorithm and control system for setting and maintaining a vacuum electron device (VED) heater voltage, such as that of a klystron. An algorithm and control system are disclosed that sets and maintains the VED's cathode at the lowest temperature required for 98% of the beam current that corresponds to a fully space charge limited (FSCL) operation. VED lifetime is dependent upon cathode temperature, and in general, a cooler cathode will last longer. The optimum heater voltage corresponds to the beam current that is 98% of the beam current during FSCL operation. As the VED ages and the cathode becomes depleted, the heater voltage will need to be gradually increased to maintain the 98% FSCL value. There are, therefore, two stages to the adaptive heater voltage algorithm—(1) initial determination of the heater voltage and (2) the determination of the heater voltage during amplifier operation.

    Abstract translation: 一种用于设置和维持真空电子装置(VED)加热器电压的自适应加热器电压算法和控制系统,例如速调管的加热器电压。 公开了一种算法和控制系统,其将VED的阴极设置和维持在对应于完全空间电荷限制(FSCL)操作的98%的束电流所需的最低温度。 VED寿命取决于阴极温度,并且通常,较冷阴极将持续更长时间。 最佳加热器电压对应于在FSCL操作期间光束电流的98%的光束电流。 随着VED老化和阴极耗尽,加热器电压将需要逐渐增加以维持98%的FSCL值。 因此,自适应加热器电压算法有两个阶段 - (1)加热器电压的初始确定和(2)放大器运行期间加热器电压的确定。

Patent Agency Ranking