Abstract:
Vacuum electron devices (VEDs) are produced having a plurality of two-dimensional layers of various materials that are bonded together to form one or more VEDs simultaneously. The two-dimensional material layers are machined to include features needed for device operation so that when assembled and bonded into a three-dimensional structure, three-dimensional features are formed. The two-dimensional layers are bonded together using brazing, diffusion bonding, assisted diffusion bonding, solid state bonding, cold welding, ultrasonic welding, and the like. The manufacturing process enables incorporation of metallic, magnetic, and ceramic materials required for VED fabrication while maintaining required positional accuracy and multiple devices per batch capability. The VEDs so produced include a combination of magnetic and electrostatic lenses for electron beam control.
Abstract:
The present invention relates to an aqueous pharmaceutical suspension composition having from about 0.2% to 20% of a substantially water soluble pharmaceutical active, e.g. acetaminophen; a suspension stabilizing effective amount of xanthan gum and microcrystalline cellulose; an effective amount of taste masking compositions; and water, as well as a process for producing such aqueous pharmaceutical suspensions.
Abstract:
A horizontal multilayer junction-edge field emitter includes a plurality of vertically-stacked multilayer structures separated by isolation layers. Each multilayer structure is configured to produce a 2-dimensional electron gas at a junction between two layers within the structure. The emitter also includes an exposed surface intersecting the 2-dimensional electron gas of each of the plurality of vertically-stacked multilayer structures to form a plurality of effectively one-dimensional horizontal line sources of electron emission.
Abstract:
A vacuum integrated electronic device has an anode region of conductive material; an insulating region on top of the anode region; a cavity extending through the insulating region and having a sidewall; and a cathode region. The cathode region has a tip portion extending peripherally within the cavity, adjacent to the sidewall of the cavity. The cathode region is formed by tilted deposition, carried out at an angle of 30-60° with respect to a perpendicular to the surface of device.
Abstract:
A cathode head can include: a first electron emitter filament having a first size; a first grid pair defining walls of a first filament slot having the first filament therein, each grid member of the first grid pair being electronically coupled to different voltage sources; a second electron emitter filament; and a second grid pair defining walls of a second filament slot having the first electron emitter therein, each grid member of the second grid pair being electronically coupled to different voltage sources. The first grid pair can have a first and second grid members; and the second grid pair can have the second grid member and a third grid member. The first grid member and third grid member are electronically coupled to the same voltage source and the second grid member being electronically coupled to a different voltage source.
Abstract:
A cathode assembly is for use in a radiation generator and includes an ohmically heated cathode, and a support having formed therein a hole and a recess at least partially surrounding the hole. In addition, there is a mount coupled to the support. The mount includes a larger outer frame positioned within the recess, a smaller inner frame carrying the ohmically heated cathode and spaced apart from the larger outer frame, and a plurality of members coupling the smaller inner frame to the larger outer frame.
Abstract:
A 4G magnetron is disclosed. The magnetron may include an anode, having a cylindrical member and anode vanes disposed within the cylindrical member which define resonant cavities therebetween, and a dispenser cathode, suitable for heating and located coaxially within said anode. The magnetron may operate in a temperature range of about 850-1050 C. The magnetron may include conductive cooling. The magnetron may comprise inventive anode and cathode structures. A method for preparing a plurality of magnetron tubes substantially simultaneously is further provided.
Abstract:
The present disclosure includes field emission device embodiments. The present disclosure also includes method embodiments for forming field emitting devices. One device embodiment includes a housing defining an interior space including a lower portion and an upper portion, a cathode positioned in the lower portion of the housing, a elongate nanostructure coupled to the cathode, an anode positioned in the upper portion of the housing, and a control grid positioned between the elongate nanostructure and the anode to control electron flow between the anode and the elongate nanostructure.
Abstract:
A method (100) creates a braze joint (58) between an anode plate (52) and a piece of graphite (56) of an x-ray tube (38). The method (100) includes receiving (102) the anode plate (52) and the piece of graphite (56). A barrier layer (66) and a braze layer (62) are arranged (104, 106, 108) between the anode plate (52) and the piece of graphite (56), where the barrier layer (66) is between the piece of graphite (56) and the brazing layer (62). The barrier layer (66) is heated (110) with the braze layer (62) to create the braze joint (58) between the anode plate (52) and the piece of graphite (56).
Abstract:
Preferred embodiments of the present invention include microplasma jet devices and arrays in various materials, and low temperature microplasma jet devices and arrays. These include preferred embodiment single microplasma jet devices and arrays of devices formed in monolithic polymer blocks with elongated microcavities. The arrays can be densely packed, for example having 100 jets in an area of a few square centimeters. Additional embodiments include metal/metal oxide microplasma jet devices that have micronozzles defined in the metal oxide itself. Methods of fabrication of microplasma jet devices are also provided by the invention, and the methods have been demonstrated as being capable of producing tailored micronozzle contours that are unitary with the material insulating electrodes.