Abstract:
Water management is improved in solid polymer electrolyte fuel cells by employing capillary channels or wicks in the lands that separate the reactant distribution channels in the flow fields. Capillary action moves water within these micro-sized capillary channels or wicks. Appropriate designs can be used to assist in the removal of water from the cell and/or in the redistribution of water from relatively wet regions in the cell to relatively dry regions.
Abstract:
Fuel cells are disclosed that operate directly on fuel streams comprising tetramethyl orthocarbonate in which tetramethyl orthocarbonate is directly oxidized at the anode and, more particularly, to solid polymer fuel cells operating directly on liquid fuel streams comprising tetramethyl orthocarbonate. Also disclosed are methods relating thereto.
Abstract:
null,null,null-Trifluorostyrene and derivatives thereof synthesized in two steps from 1,1,1,2-tetrafluoroethylene. In the first step, 1,1,1,2-tetrafluoroethylene is reacted with a base, a metal salt such as zinc chloride and an optionally amine to form a trifluorovinyl metal complex. In the second step, the trifluorostyrene or derivative is obtained by reacting the trifluorovinyl metal complex with an aryl transfer agent such as, for example, an aryl triflate or an aryl halide, in the presence of a metal catalyst and optionally a coordinating ligand. Both steps may be carried out in one reactor.
Abstract:
A fuel cell system electrically couples a battery in parallel with the fuel cell stack to power a load. An operational condition of the battery is compared to a desired operating condition and a partial pressure of a reactant flow to at least a portion of the fuel cell stack is adjusted based on the determined amount of deviation. The operational condition can include voltage, charge of the battery. Individual fuel cell systems can be combined in series and/or parallel to produce a combined fuel cell system having a desired output voltage and current.
Abstract:
A method for locating an internal transfer leak in a fuel cell stack by applying a substantially constant gas pressure difference between a first fluid stream passage and a second fluid stream passage, wherein gas pressure in the second fluid stream passage is higher than gas pressure in the first fluid stream passage. A test gas is supplied to the second fluid stream passage and a test liquid is supplied to the first fluid stream passage. A parameter indicative of flow rate of the test gas exiting the first fluid stream passage is measured as the test liquid fills the first fluid stream passage. An apparatus for locating an internal transfer leak in a fuel cell stack is also provided.
Abstract:
An electrochemical fuel cell having reactant flow passages with a non-uniform design to increase reactant access to an adjacent fluid distribution layer at the outlet region as compared to the inlet region. In an embodiment, at least one reactant flow passage is narrower at the inlet than at the outlet, with a substantially constant cross-sectional area maintained along its length. Coolant channels may optionally be incorporated in the fluid flow plate to provide increased cooling at the reactant inlet. The plates may vary in thickness and run in counter-flow to improve efficient stacking of the fuel cells in a fuel cell stack with reactant passages of varying depth. In another embodiment, electrically conductive, masking foil covers a portion of at least one reactant flow passage in the inlet region, but does not extend the length of the passage.
Abstract:
A fuel cell resistance test system includes a contact head having a plurality of spaced electrical contacts for contacting multiple ones of the fuel cells composing the stack. In one embodiment, a plurality of selectively actuable switches produce a short between respective pairs of adjacent ones of the electrical contacts. A processor opens each of the switches, one at a time in succession, to apply a defined voltage from a voltage source, successively across pairs of adjacent ones of the electrical contacts. A current sensor measures a resulting current and the processor or other computer determines whether a short exists based on the magnitude of the defined voltage and the magnitude of the resulting current. Alternatively, the test system may include a current source and a voltage sensor.
Abstract:
A sealed fuel cell assembly comprising a sealed active region comprising an ionomer electrolyte disposed between an anode electrode and a cathode electrode to form a membrane electrode assembly; a sealed manifold region adjacent the sealed active area; and an elastomeric seal comprising a first elastomeric seal bead circumscribing a periphery of the membrane electrode assembly and a second elastomeric seal bead circumscribing a periphery of a manifold port; wherein the elastomeric seal further comprises a reinforcing material that is physically separated from the membrane electrode assembly and has a lower elasticity than the elastomeric seal.
Abstract:
A membrane electrode assembly comprises a polymer electrolyte interposed between an anode electrode and a cathode electrode, the anode electrode comprising an anode catalyst layer adjacent at least a portion of a first major surface of the polymer electrolyte, the cathode electrode comprising a cathode catalyst layer adjacent at least a portion of a second major surface of the polymer electrolyte; at least one of the anode and cathode catalyst layers comprising: a first catalyst composition comprising a noble metal; and a second composition comprising a metal oxide; wherein the second composition has been treated with a fluoro-phosphonic acid compound.
Abstract:
A membrane electrode assembly comprises an anode electrode comprising an anode catalyst layer; a cathode electrode comprising a cathode catalyst layer; and a polymer electrolyte membrane interposed between the anode electrode and the cathode electrode; wherein at least one of the anode and cathode catalyst layers comprises a block co-polymer comprising poly(ethylene oxide) and poly(propylene oxide).