Abstract:
Alkali (or other active) metal battery and other electrochemical cells incorporating active metal anodes together with aqueous cathode/electrolyte systems. The battery cells have a highly ionically conductive protective membrane adjacent to the alkali metal anode that effectively isolates (de-couples) the alkali metal electrode from solvent, electrolyte processing and/or cathode environments, and at the same time allows ion transport in and out of these environments. Isolation of the anode from other components of a battery cell or other electrochemical cell in this way allows the use of virtually any solvent, electrolyte and/or cathode material in conjunction with the anode. Also, optimization of electrolytes or cathode-side solvent systems may be done without impacting anode stability or performance. In particular, Li/water, Li/air and Li/metal hydride cells, components, configurations and fabrication techniques are provided.
Abstract:
A fuel cell power system includes a fuel cell which has an optimal voltage; an energy storage device having a nominal voltage substantially similar to the optimal voltage of the fuel cell; and an electrical switch that, in operation, selectively electrically couples the fuel cell and the energy storage device to charge the energy storage device. A method includes providing a fuel cell having a nominal voltage; providing an energy storage device having a nominal voltage which is substantially similar to the nominal voltage of the fuel cell and electrically coupling the energy storage device to a load; and selectively electrically coupling the fuel cell to the energy storage device to substantially maintain the energy storage device above a predetermined voltage threshold.
Abstract:
An electronic apparatus has a fuel cell, a battery, a circuit coupled to the fuel cell and the battery, for outputting electric power from at least one of the fuel cell and the battery, and an electronic device coupled to the circuit. The electronic device is operable with the electric power output from the circuit.
Abstract:
A solid-oxide fuel cell assembly comprising a stack of individual fuel cells for use as an auxiliary power unit in a vehicle. Each cell generates between 0.7V and 1.0 volts, depending upon load. The total output voltage of the assembly must be maintained between 42V and 48V. An assembly comprising 60 cells is optimal for automotive use, being the minimum number of cells required to provide a minimum of 42V (0.7 times 60) under high load, and requiring the minimum voltage control at low loads 1.0V times 60) to provide a maximum of 48V.
Abstract:
The present invention concerns a multi-layered cell, particular a liquid crystal display cell (1), or an electrochemical photovoltaic cell, or a combination of a liquid crystal display cell and an electrochemical photovoltaic cell, this multi-layered cell comprising n superposed substrates (2, 4, 6, 8), n being an integer number greater than or equal to three, these substrates (2, 4, 6, 8) being joined by sealing frames (14, 16, 18) delimiting (nnull1) sealed cavities (20, 22, 24) for containing an optically or electro-optically active medium, the upper surface (10) of the first substrate (2) and the lower surface (12) of the last substrate (8) forming the external faces of the cell (1), said multi-layered cell (1) being characterised in that it includes (nnull1) filling holes (26, 28, 30) arranged, at least in part, on one side or other of the cell (1), said (nnull1) filling holes (26, 28, 30) each communicating with a different cavity and passing through at least one cavity to reach the cavity with which they are connected, said (nnull1) filling holes (26, 28, 30) being isolated from the cavity or cavities through which they pass.
Abstract:
A fuel cell system includes a fuel cell stack, an air supply system including a blower for driving the air to the fuel cell stack and an air humidifier for humidifying the air supplied to the fuel cell stack, a hydrogen supply system including a hydrogen storage and a pressure regulating device, and a hydrogen recirculator for receiving excessive hydrogen from the fuel cell stack and forcing the hydrogen back into the fuel cell stack in order to induce a hydrogen flow inside the fuel cell stack. A control circuit electrically controls the flow and pressure regulating device for regulating the hydrogen flow to the fuel cell stack and electrically controls the blower to regulate the air flows to the fuel cell stack and the air humidifier.
Abstract:
A fuel cell system is provided which performs simple control of the time until warm-up of the reformer (1) is completed. This fuel cell system comprises a reformer (1) which generates a reformate gas, and a fuel cell (2) which generates power from an oxidizing agent and the reformate gas supplied from the reformer (1). The fuel cell system is provided with a temperature sensor (7) which performs a detection at one position of the temperature immediately before starting or re-starting the reformer (1) and a controller (6) estimating the time to warm-up the reformer (1) based on the detected temperature of the reformer (1).
Abstract:
A fuel cell system that includes a control system for regulating the power produced by the fuel cell system. The fuel cell system includes a fuel cell stack adapted to produce electrical power from a feed. In some embodiments, the fuel cell system includes a fuel processing assembly adapted to produce the feed for the fuel cell stack from one or more feedstocks. The control system regulates the power produced by the fuel cell system to prevent damage to, and/or failure of, the system.
Abstract:
A fuel-cell system for a moving body comprising a reforming reactor (120) for reforming fuel to generate gas including hydrogen, a carbon monoxide removing reactor (130) for removing carbon monoxide included in a reformed gas generated in the reforming reactor, a fuel-cell (200) for generating electric power using the reformed gas and gas including oxygen which passed through the carbon monoxide removing reactor, and a compressor (400) for supplying the gas including oxygen to the reforming reactor, the carbon monoxide removing reactor and the fuel-cell, wherein when it is judged that the moving body was running and the accelerator was closed, fuel, water and gas including oxygen, or fuel and the gas including oxygen is supplied to the reforming reactor such that minimum hydrogen required for maintaining a temperature of the reforming reactor is generated, and minimum gas including oxygen required for maintaining a temperature of the carbon monoxide removing reactor is supplied to the carbon monoxide removing reactor.
Abstract:
A portable fuel cell electric power generator is disclosed, suitable for use as a UPS (100), including a fuel cell assembly (200), a power conditioning system (160) including a DC to DC converter and a DC to AC inverter, a plurality of metal hydride canisters (300), a manifold assembly (320), and a battery system (150), all enclosed in a mobile chassis (130). The fuel cell assembly includes a compressor (230) for providing compressed air to the fuel cell stack (210) and a condenser for condensing water vapor generated by the fuel cell stack. The canisters provide hydrogen to the fuel cells, and can be hot swapped such that the generator can operate continuously for an indefinite period. The battery system provides start-up power to the compressor, as well as initial back up power for the power outlet during fuel cell start-up. A heat transfer device (307) in the canisters aids in maintaining the desired temperature in the metal hydride. An air flow system including a fan (24) and cowling (245) direct air over the fuel cell stack to remove excess heat, and past the canisters to warm the canisters.