Abstract:
A method of communicating in a secure communication system, comprises the steps of assembling a message at a sender, then determining a security level, and including an indication of the security level in a header of the message. The message is then sent to a recipient.
Abstract:
There is provided a method for secure communications. The method comprises obtaining a broadcast message, computing a signature for said broadcast message using a private key, and sending a transmission to a communication device. The private key is associated with a certificate and the transmission comprises the signature.
Abstract:
There are disclosed systems and methods for creating a self-signed implicit certificate. In one embodiment, the self-signed implicit certificate is generated and operated upon using transformations of a nature similar to the transformations used in the ECQV protocol. In such a system, a root CA or other computing device avoids having to generate an explicit self-signed certificate by instead generating a self-signed implicit certificate.
Abstract:
The invention relates to a method of generating an implicit certificate and a method of generating a private key from a public key. The method involves a method generating an implicit certificate in three phases. The public key may be an entity's identity or derived from an entity's identify. Only the owner of the public key possesses complete information to generate the corresponding private key. No authority is required to nor able to generate an entity's private key.
Abstract:
During generation of a signature on a message to create a signed message, a signer determines one of the signature components such that particular information can be extracted from the signature component. The particular information may be related to one or more of the signer and the message to be signed. After receiving a signed message purported to be signed by the signer, a verifier can extract the particular information from the signature component.
Abstract:
A method of communicating in a secure communication system, comprises the steps of assembling a message at a sender, then determining a security level, and including an indication of the security level in a header of the message. The message is then sent to a recipient.
Abstract:
A shielding article is provided, for shielding a device enabled for proximity-based communications, for example, NFC-enabled devices. The shielding article comprises a shielding component configured to prevent operation of an antenna of the device used for conducting proximity-based communications, without preventing operation of at least one other antenna of the device when the shielding component is aligned with the antenna used for conducting proximity-based communications. The shielding article may be separate from, or included in an accessory or carrying article and may be fixed or detachably coupled thereto.
Abstract:
A method is presented to compute square roots of finite field elements from the prime finite field of characteristic p over which points lie on a defined elliptic curve. Specifically, while performing point decompression of points that lie on a standardized elliptic curve over a prime finite field of characteristic 2224−296+1, the present method utilizes short Lucas sub-sequences to optimize the implementation of a modified version of Mueller's square root algorithm, to find the square root modulo of a prime number. The resulting method is at least twice as fast as standard methods employed for square root computations performed on elliptic curves.
Abstract:
A key establishment protocol includes the generation of a value of cryptographic function, typically a hash, of a session key and public information. This value is transferred between correspondents together with the information necessary to generate the session key. Provided the session key has not been compromised, the value of the cryptographic function will be the same at each of the correspondents. The value of the cryptographic function cannot be compromised or modified without access to the session key.
Abstract:
During generation of a signature on a message to create a signed message, a signer determines one of the signature components such that particular information can be extracted from the signature component. The particular information may be related to one or more of the signer and the message to be signed. After receiving a signed message purported to be signed by the signer, a verifier can extract the particular information from the signature component.